December  2010, 28(4): 1713-1751. doi: 10.3934/dcds.2010.28.1713

Analytical proof of space-time chaos in Ginzburg-Landau equations

1. 

Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom

2. 

Department of Mathematics, University of Surrey, Guildford, GU2 7XH

Received  October 2009 Revised  February 2010 Published  June 2010

We prove that the attractor of the 1D quintic complex Ginzburg-Landau equation with a broken phase symmetry has strictly positive space-time entropy for an open set of parameter values. The result is obtained by studying chaotic oscillations in grids of weakly interacting solitons in a class of Ginzburg-Landau type equations. We provide an analytic proof for the existence of two-soliton configurations with chaotic temporal behavior, and construct solutions which are closed to a grid of such chaotic soliton pairs, with every pair in the grid well spatially separated from the neighboring ones for all time. The temporal evolution of the well-separated multi-soliton structures is described by a weakly coupled lattice dynamical system (LDS) for the coordinates and phases of the solitons. We develop a version of normal hyperbolicity theory for the weakly coupled LDS's with continuous time and establish for them the existence of space-time chaotic patterns similar to the Sinai-Bunimovich chaos in discrete-time LDS's. While the LDS part of the theory may be of independent interest, the main difficulty addressed in the paper concerns with lifting the space-time chaotic solutions of the LDS back to the initial PDE. The equations we consider here are space-time autonomous, i.e. we impose no spatial or temporal modulation which could prevent the individual solitons in the grid from drifting towards each other and destroying the well-separated grid structure in a finite time. We however manage to show that the set of space-time chaotic solutions for which the random soliton drift is arrested is large enough, so the corresponding space-time entropy is strictly positive.
Citation: Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713
[1]

Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803

[2]

Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 643-663. doi: 10.3934/dcds.2008.21.643

[5]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[6]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[7]

Paulo Cesar Carrião, Olimpio Hiroshi Miyagaki. On a class of variational systems in unbounded domains. Conference Publications, 2001, 2001 (Special) : 74-79. doi: 10.3934/proc.2001.2001.74

[8]

Arno Berger. Multi-dimensional dynamical systems and Benford's Law. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 219-237. doi: 10.3934/dcds.2005.13.219

[9]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[10]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[11]

Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585

[12]

Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116

[13]

Emile Franc Doungmo Goufo. Multi-directional and saturated chaotic attractors with many scrolls for fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 629-643. doi: 10.3934/dcdss.2020034

[14]

Péter Bálint, Imre Péter Tóth. Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 37-59. doi: 10.3934/dcds.2006.15.37

[15]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[16]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[17]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[18]

Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751

[19]

Balázs Boros, Josef Hofbauer, Stefan Müller, Georg Regensburger. Planar S-systems: Global stability and the center problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 707-727. doi: 10.3934/dcds.2019029

[20]

Chengjian Zhang, Lu Zhao. The attractors for 2nd-order stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 575-590. doi: 10.3934/dcds.2017023

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]