March  2010, 28(1): 199-226. doi: 10.3934/dcds.2010.28.199

Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics

1. 

LIMSI-CNRS, UPR 3251, BP 133, Orsay F-91403, France, France

2. 

Johns Hopkins University, Department of Mechanical Engineering, Baltimore, MD 21218, United States

3. 

Florida State University, Computational Science & Engineering – Department of Mathematics, Tallahassee, FL 32306-4510, United States

Received  November 2009 Revised  February 2010 Published  April 2010

The simulation of dynamical systems involving random coefficients by means of stochastic spectral methods (Polynomial Chaos or other types of orthogonal stochastic expansions) is faced with well known computational difficulties, arising in particular due to the broadening of the solution spectrum as time evolves. The simulation of such systems thus requires increasing the basis dimension and computational resources for long time integration. This paper deals with systems having almost surely a stable limit cycles. It is proposed to reformulate the problem at hand in a rescaled time framework such that the spectrum of the rescaled solution remains narrow-banded. Two variants of this approach are considered and evaluated. The first relies on an explicit expression of a time-dependent, uncertain, time scale related to some distance between the corresponding solution and a reference deterministic system. The time scale is adjusted at each time step so that the distance from the reference system solution remains small, mimicking "in phase'' behavior. The second variant achieves the same objective by borrowing concepts from optimal control theory, and yields more precise time-scale estimates at the price of a higher CPU cost. It is thus more appropriate for uncertain systems exhibiting a stiff behavior and complex limit cycles. The method is applied to the case of a linear oscillator with uncertain properties, and to a stiff nonlinear chemical system involving uncertain reaction constants. The tests demonstrate the effectiveness of the proposed approaches, at least in situations where the topology of the limit cycle does not change when the uncertain system parameters vary.
Citation: Olivier P. Le Maître, Lionel Mathelin, Omar M. Knio, M. Yousuff Hussaini. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 199-226. doi: 10.3934/dcds.2010.28.199
[1]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[2]

José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357-375. doi: 10.3934/jcd.2014.1.357

[3]

Andrew J. Majda, Michal Branicki. Lessons in uncertainty quantification for turbulent dynamical systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3133-3221. doi: 10.3934/dcds.2012.32.3133

[4]

Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2475-2485. doi: 10.3934/dcdsb.2018070

[5]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[6]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure and Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[7]

Sergey Shemyakov, Roman Chernov, Dzmitry Rumiantsau, Dierk Schleicher, Simon Schmitt, Anton Shemyakov. Finding polynomial roots by dynamical systems – A case study. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6945-6965. doi: 10.3934/dcds.2020261

[8]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[9]

Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435

[10]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1103-1114. doi: 10.3934/dcdss.2020065

[11]

Freddy Dumortier. Sharp upperbounds for the number of large amplitude limit cycles in polynomial Lienard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1465-1479. doi: 10.3934/dcds.2012.32.1465

[12]

Armengol Gasull, Hector Giacomini. Upper bounds for the number of limit cycles of some planar polynomial differential systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 217-229. doi: 10.3934/dcds.2010.27.217

[13]

Tao Li, Jaume Llibre. Limit cycles of piecewise polynomial differential systems with the discontinuity line xy = 0. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3887-3909. doi: 10.3934/cpaa.2021136

[14]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[15]

Helmut Rüssmann. KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 683-718. doi: 10.3934/dcdss.2010.3.683

[16]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[17]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5581-5599. doi: 10.3934/dcdsb.2020368

[18]

Wenye Liu, Maoan Han. Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022053

[19]

Yuan Chang, Yuzhen Bai. Limit cycle bifurcations by perturbing piecewise Hamiltonian systems with a nonregular switching line via multiple parameters. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022090

[20]

Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (163)
  • HTML views (0)
  • Cited by (24)

[Back to Top]