
Previous Article
Unconditionally stable schemes for equations of thin film epitaxy
 DCDS Home
 This Issue

Next Article
Generalized eigenvalue problem for totally discontinuous operators
Invariant measures for the $3$D NavierStokesVoigt equations and their NavierStokes limit
1.  Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel, Israel 
[1] 
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed NavierStokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 53375365. doi: 10.3934/cpaa.2020241 
[2] 
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible NavierStokes equations in two dimensions. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020348 
[3] 
Bo Chen, Youde Wang. Global weak solutions for LandauLifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020268 
[4] 
Adel M. AlMahdi, Mohammad M. AlGharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020273 
[5] 
Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : . doi: 10.3934/ipi.2020074 
[6] 
Mingjun Zhou, Jingxue Yin. Continuous subsonicsonic flows in a twodimensional semiinfinitely long nozzle. Electronic Research Archive, , () : . doi: 10.3934/era.2020122 
[7] 
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 55915608. doi: 10.3934/cpaa.2020253 
[8] 
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 413438. doi: 10.3934/dcds.2020136 
[9] 
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 128. doi: 10.3934/dcds.2020345 
[10] 
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020272 
[11] 
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020461 
[12] 
Cheng He, Changzheng Qu. Global weak solutions for the twocomponent Novikov equation. Electronic Research Archive, 2020, 28 (4) : 15451562. doi: 10.3934/era.2020081 
[13] 
Alberto Bressan, Wen Shen. A posteriori error estimates for selfsimilar solutions to the Euler equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 113130. doi: 10.3934/dcds.2020168 
[14] 
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Timefractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 257275. doi: 10.3934/dcds.2020137 
[15] 
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multidimensional space. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 395412. doi: 10.3934/dcds.2020364 
[16] 
Jiaquan Liu, Xiangqing Liu, ZhiQiang Wang. Signchanging solutions for a parameterdependent quasilinear equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020454 
[17] 
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Kleingordon equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020448 
[18] 
PierreEtienne Druet. A theory of generalised solutions for ideal gas mixtures with MaxwellStefan diffusion. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020458 
[19] 
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020320 
[20] 
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020379 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]