June  2010, 28(2): 455-468. doi: 10.3934/dcds.2010.28.455

Monotonicity methods for infinite dimensional sandwich systems

1. 

Department of Mathematics, University of California, Irvine, Irvine, CA 92697-3875, United States

Received  November 2009 Revised  April 2010 Published  April 2010

We show how hypotheses for many problems can be significantly reduced if we employ the monotonicity method. We apply it to problems for the semilinear wave equation, where infinite dimensional methods are needed.
Citation: Martin Schechter. Monotonicity methods for infinite dimensional sandwich systems. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 455-468. doi: 10.3934/dcds.2010.28.455
[1]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[2]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[3]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[4]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[5]

Monica Lazzo, Paul G. Schmidt. Monotone local semiflows with saddle-point dynamics and applications to semilinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 566-575. doi: 10.3934/proc.2005.2005.566

[6]

Salvatore A. Marano, Sunra J. N. Mosconi. Multiple solutions to elliptic inclusions via critical point theory on closed convex sets. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3087-3102. doi: 10.3934/dcds.2015.35.3087

[7]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations and Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[8]

El Houcein El Abdalaoui, Joanna Kułaga-Przymus, Mariusz Lemańczyk, Thierry de la Rue. The Chowla and the Sarnak conjectures from ergodic theory point of view. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2899-2944. doi: 10.3934/dcds.2017125

[9]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[10]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[11]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[12]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[13]

D. Motreanu, Donal O'Regan, Nikolaos S. Papageorgiou. A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1791-1816. doi: 10.3934/cpaa.2011.10.1791

[14]

Djédjé Sylvain Zézé, Michel Potier-Ferry, Yannick Tampango. Multi-point Taylor series to solve differential equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1791-1806. doi: 10.3934/dcdss.2019118

[15]

Xiao-Fei Peng, Wen Li. A new Bramble-Pasciak-like preconditioner for saddle point problems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 823-838. doi: 10.3934/naco.2012.2.823

[16]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[17]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021020

[18]

Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065

[19]

Fathalla A. Rihan, Yang Kuang, Gennady Bocharov. From the guest editors: "Delay Differential Equations: Theory, Applications and New Trends". Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : i-iv. doi: 10.3934/dcdss.2020404

[20]

Yanzhao Cao, Anping Liu, Zhimin Zhang. Special section on differential equations: Theory, application, and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : i-ii. doi: 10.3934/dcdsb.2015.20.5i

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]