
Previous Article
Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability
 DCDS Home
 This Issue

Next Article
Partial regularity of Brenier solutions of the MongeAmpère equation
Charged cosmological dust solutions of the coupled Einstein and Maxwell equations
1.  Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, United States 
2.  Department of Mathematics, Polytechnic Institute of New York University, Brooklyn, NY 11201, United States 
[1] 
YueJun Peng, Shu Wang. Asymptotic expansions in twofluid compressible EulerMaxwell equations with small parameters. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 415433. doi: 10.3934/dcds.2009.23.415 
[2] 
Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete & Continuous Dynamical Systems  A, 2012, 32 (2) : 657677. doi: 10.3934/dcds.2012.32.657 
[3] 
Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 17491762. doi: 10.3934/dcds.2017073 
[4] 
Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 12511267. doi: 10.3934/cpaa.2009.8.1251 
[5] 
Sergiu Klainerman, Igor Rodnianski. On emerging scarred surfaces for the Einstein vacuum equations. Discrete & Continuous Dynamical Systems  A, 2010, 28 (3) : 10071031. doi: 10.3934/dcds.2010.28.1007 
[6] 
Brian Smith and Gilbert Weinstein. On the connectedness of the space of initial data for the Einstein equations. Electronic Research Announcements, 2000, 6: 5263. 
[7] 
Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407414. doi: 10.3934/proc.2013.2013.407 
[8] 
Xueke Pu, Min Li. Asymptotic behaviors for the full compressible quantum NavierStokesMaxwell equations with general initial data. Discrete & Continuous Dynamical Systems  B, 2019, 24 (9) : 51495181. doi: 10.3934/dcdsb.2019055 
[9] 
Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 17071714. doi: 10.3934/cpaa.2011.10.1707 
[10] 
Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97118. doi: 10.3934/cpaa.2014.13.97 
[11] 
Wenxiong Chen, Shijie Qi. Direct methods on fractional equations. Discrete & Continuous Dynamical Systems  A, 2019, 39 (3) : 12691310. doi: 10.3934/dcds.2019055 
[12] 
Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic & Related Models, 2017, 10 (1) : 6191. doi: 10.3934/krm.2017003 
[13] 
Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems  S, 2010, 3 (3) : 409427. doi: 10.3934/dcdss.2010.3.409 
[14] 
Siegfried Maier, Jürgen Saal. Stokes and NavierStokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems  S, 2014, 7 (5) : 10451063. doi: 10.3934/dcdss.2014.7.1045 
[15] 
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431444. doi: 10.3934/cpaa.2005.4.431 
[16] 
PierreDamien Thizy. KleinGordonMaxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 10971125. doi: 10.3934/cpaa.2015.14.1097 
[17] 
Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems  B, 2005, 5 (3) : 631658. doi: 10.3934/dcdsb.2005.5.631 
[18] 
Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems  B, 2006, 6 (2) : 257272. doi: 10.3934/dcdsb.2006.6.257 
[19] 
Percy D. Makita. Nonradial solutions for the KleinGordonMaxwell equations. Discrete & Continuous Dynamical Systems  A, 2012, 32 (6) : 22712283. doi: 10.3934/dcds.2012.32.2271 
[20] 
Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343357. doi: 10.3934/eect.2019018 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]