July  2010, 28(3): 899-913. doi: 10.3934/dcds.2010.28.899

Partial regularity for elliptic equations

1. 

Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences, Wuhan 430071, China

2. 

Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200, Australia

Received  March 2010 Revised  April 2010 Published  April 2010

In this paper we study partial and anisotropic Schauder estimates for linear and nonlinear elliptic equations. We prove that if the inhomogeneous term $f$ is Hölder continuous in the $x_n$-direction, then the mixed derivatives uxxn are Hölder continuous; if $f$ satisfies an anisotropic Hölder continuity condition, then the second derivatives $D^2 u$ satisfy related anisotropic Hölder continuity estimates.
Citation: Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899
[1]

Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981

[2]

Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391

[3]

Mostafa Fazly, Yuan Li. Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4185-4206. doi: 10.3934/dcds.2021033

[4]

Teresa Isernia, Chiara Leone, Anna Verde. Partial regularity result for non-autonomous elliptic systems with general growth. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021160

[5]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[6]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[7]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[8]

Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179

[9]

Juan Dávila, Olivier Goubet. Partial regularity for a Liouville system. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2495-2503. doi: 10.3934/dcds.2014.34.2495

[10]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[11]

Alassane Niang. Boundary regularity for a degenerate elliptic equation with mixed boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (1) : 107-128. doi: 10.3934/cpaa.2019007

[12]

Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147-153. doi: 10.3934/jmd.2007.1.147

[13]

Manuel del Pino. Supercritical elliptic problems from a perturbation viewpoint. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 69-89. doi: 10.3934/dcds.2008.21.69

[14]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[15]

Alessandro Ferriero. A direct proof of the Tonelli's partial regularity result. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2089-2099. doi: 10.3934/dcds.2012.32.2089

[16]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[17]

Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1783-1820. doi: 10.3934/cpaa.2021041

[18]

Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147

[19]

Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631

[20]

F. D. Araruna, F. O. Matias, M. P. Matos, S. M. S. Souza. Hidden regularity for the Kirchhoff equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1049-1056. doi: 10.3934/cpaa.2008.7.1049

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (157)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]