-
Previous Article
On emerging scarred surfaces for the Einstein vacuum equations
- DCDS Home
- This Issue
-
Next Article
Analytical, geometrical and topological aspects of a class of mean field equations on surfaces
The Jacobi-Toda system and foliated interfaces
1. | Departamento de Ingeniería Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile, Chile |
2. | Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong |
[1] |
Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465 |
[2] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[3] |
Jérôme Bertrand. Prescription of Gauss curvature on compact hyperbolic orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1269-1284. doi: 10.3934/dcds.2014.34.1269 |
[4] |
Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271 |
[5] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5627-5640. doi: 10.3934/dcdsb.2020370 |
[6] |
Vincenzo Ambrosio. Concentration phenomena for critical fractional Schrödinger systems. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2085-2123. doi: 10.3934/cpaa.2018099 |
[7] |
Chao Ji, Vicenţiu D. Rădulescu. Concentration phenomena for magnetic Kirchhoff equations with critical growth. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5551-5577. doi: 10.3934/dcds.2021088 |
[8] |
Vittorio Martino. On the characteristic curvature operator. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911 |
[9] |
Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965 |
[10] |
Xumin Jiang. Isometric embedding with nonnegative Gauss curvature under the graph setting. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3463-3477. doi: 10.3934/dcds.2019143 |
[11] |
Hany A. Hosham, Eman D Abou Elela. Discontinuous phenomena in bioreactor system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2955-2969. doi: 10.3934/dcdsb.2018294 |
[12] |
Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 |
[13] |
Yong Liu, Jing Tian, Xuelin Yong. On the even solutions of the Toda system: A degree argument approach. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1895-1916. doi: 10.3934/cpaa.2021075 |
[14] |
Linlin Dou. Singular solutions of Toda system in high dimensions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3119-3142. doi: 10.3934/dcds.2022011 |
[15] |
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897 |
[16] |
Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868 |
[17] |
Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407 |
[18] |
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009 |
[19] |
Feifei Tang, Suting Wei, Jun Yang. Phase transition layers for Fife-Greenlee problem on smooth bounded domain. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1527-1552. doi: 10.3934/dcds.2018063 |
[20] |
Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1737-1754. doi: 10.3934/cpaa.2021039 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]