\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations

Abstract Related Papers Cited by
  • Non-integrability criteria, based on differential Galois theory and requiring the use of higher order variational equations (VEk), are applied to prove the non-integrability of the Swinging Atwood's Machine for values of the parameter which can not be decided using first order variational equations (VE1).
    Mathematics Subject Classification: Primary: 37J30, 70H07; Secondary: 34M35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables," Reprint of the 1972 edition. Dover Publications, Inc., New York, 1992.

    [2]

    C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. OlivierUsers' guide to PARI/GP, (freely available from http://pari.math.u-bordeaux.fr/).

    [3]

    J. Casasayas, A. Nunes and N. Tufillaro, Swinging Atwood's machine, J. Physique, 51 (1990), 1693-1702.

    [4]

    J. Martinet and J-P. Ramis, Théorie de Galois différentielle et resommation, "Computer Algebra and Differential Equations," 117-214, E.Tournier, Ed., Academic Press, London, 1989.

    [5]

    R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, 14 (2009), 323-348.

    [6]

    R. Martínez and C. Simó, Efficient numerical implementation of integrability criteria based on high order variational equations, Preprint, 2010.

    [7]

    J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems," Progress in Mathematics vol. 179, Birkhäuser, 1999.

    [8]

    J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems, Methods and Applications of Analysis, 8 (2001), 33-96.

    [9]

    J. J. Morales-Ruiz and J.-P. Ramis, Galoisian Obstructions to integrability of Hamiltonian systems II, Methods and Applications of Analysis, 8 (2001), 97-112.

    [10]

    J. J. Morales-Ruiz, J.-P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Scient. Éc. Norm. Sup. 4$^e$ série, 40 (2007), 845-884.

    [11]

    J. J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Diff. Equations, 129 (1996), 111-135.doi: doi:10.1006/jdeq.1996.0113.

    [12]

    J. J. Morales, C. Simó and S. Simón, Algebraic proof of the non-integrability of Hill's Problem, Ergodic Theory and Dynamical Systems, 25 (2005), 1237-1256.doi: doi:10.1017/S0143385704001038.

    [13]

    O. Pujol, J.-P. Pérez, J.-P. Ramis, C. Simó, S. Simon and J.-A. Weil, Swinging Atwood's Machine: Experimental and numerical results, theoretical study, Physica D, 239 (2010), 1067-1081.doi: doi:10.1016/j.physd.2010.02.017.

    [14]

    L. Schlesinger, "Handbuch der Theorie der Linearen Differentialgleichungen," Reprint. Biblioteca Mathematica Teubneriana, Band 31, Johnson Reprint Corp., New York - London, 1968.

    [15]

    N. Tufillaro, Integrable motion of a swinging Atwood's machine, Am. J. Phys., 54 (1986), 142-143.doi: doi:10.1119/1.14710.

    [16]

    S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl., 16 (1982), 181-189.doi: doi:10.1007/BF01081586.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return