\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment

Abstract Related Papers Cited by
  • In this paper we build models for short-term, mean-term and long-term dynamics of dune and megariple morphodynamics. They are models that are degenerated parabolic equations which are, moreover, singularly perturbed. We, then give an existence and uniqueness result for the short-term and mean-term models. This result is based on a time-space periodic solution existence result for degenerated parabolic equation that we set out. Finally the short-term model is homogenized.
    Mathematics Subject Classification: Primary: 35K65, 35B25, 35B10 ; Secondary: 92F05, 86A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084.

    [2]

    R. A. Bagnold, The movement of desert sand, Proceedings of the Royal Society of London A, 157 (1936), 594-620.doi: 10.1098/rspa.1936.0218.

    [3]

    G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasilinear parabolic equations, SIAM J. Math. Anal., 32 (2001), 1311-1323.doi: 10.1137/S0036141000369344.

    [4]

    H. Berestycki, F. Hamel and L. Roques, Analysis of the periodicity fragmented environment model: I-species persistence, J. Math Biol., 51 (2005), 75-113.doi: 10.1007/s00285-004-0313-3.

    [5]

    H. Berestycki, F. Hamel and L. Roques, Analysis of the periodicity fragmented environment model: Ii-biological invasions and pulsating travelling fronts, J. Math Pures Appl., 84 (2005), 1101-1146.doi: 10.1016/j.matpur.2004.10.006.

    [6]

    P. Blondeau, Mechanics of coastal forms, Ann. Rev. Fluids Mech., 33 (2001), 339-370.doi: 10.1146/annurev.fluid.33.1.339.

    [7]

    M. Bostan, Periodic solutions for evolution equations, Elec. J. Diff. Equations. Monograph, 3 (2002), 1-41.

    [8]

    F. Da Lio, Large time behavior of solutions to parabolic equations with Neumann boundary conditions, J. Math. Anal. Appl., 339 (2008), 384-398.doi: 10.1016/j.jmaa.2007.06.052.

    [9]

    G. P. Dawson, B. Johns and R. L. Soulsby, A numerical model of shallow-water flow over topography, in "Physical Oceanography of Coastal and Shelf Seas," Elsevier Oceanography Series, 35 (1983), 267-320.doi: 10.1016/S0422-9894(08)70504-X.

    [10]

    H. J. De Vriend, "Steady Flow in Shallow Channel Bends," Ph.D. thesis, Delft Univ. of Technology, 1981.

    [11]

    F. Engelund and E. Hansen, "Investigation of Flow in Alluvial Streams," Tech. Report 9, Tech. Univ. Denmark Hydraulic Lab. Bull., 1966.

    [12]

    B. W. Flemming, The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes, Marine Sandwave Dynamics, International Workshop, March 23-24 2000 (A. Trentesaux and T. Garlan, eds.), University of Lille 1, France, 2000.

    [13]

    E. Frénod, P. A. Raviart and E. Sonnendrücker, Asymptotic expansion of the Vlasov equation in a large external magnetic field, J. Math. Pures et Appl., 80 (2001), 815-843.doi: 10.1016/S0021-7824(01)01215-6.

    [14]

    P. E. Gadd, W. Lavelle and D. J. P. Swift, Estimates of sand transport on the New York shelf using near-bottom current meter observations, J. Sed. Petrol., 48 (1978), 239-252.

    [15]

    A. Hansbo, Error estimates for the numerical solution of a time-periodic linear parabolic problem, BIT, 31 (1991), 664-685.doi: 10.1007/BF01933180.

    [16]

    D. Idier, "Dunes et Bancs de Sables du Plateau Continental: Observations in-situ et Modélisation Numérique," Ph.D. thesis, INP Toulouse, France 2002.

    [17]

    D. Idier, D. Astruc and S. J. M. H. Hulcher, Influence of bed roughness on dune and megaripple generation, Geophysical Research Letters, 31 (2004), 1-5.doi: 10.1029/2004GL019969.

    [18]

    B. Johns, R. Soulsby and T. Chesher, The modelling of sand waves evolution resulting from suspended and bed load transport of sediment, J. Hydraul. Reseach, 28 (1990), 355-374.doi: 10.1080/00221689009499075.

    [19]

    J. Kennedy, The formation of sediment ripples, dunes and antidunes, Ann. Rev. Fluids Mech., 1 (1969), 147-168.doi: 10.1146/annurev.fl.01.010169.001051.

    [20]

    M. Kono, Remarks on periodic solutions of linear parabolic differential equations of the second order, Proc. Japan Acad., 42 (1966), 5-9.doi: 10.3792/pja/1195522166.

    [21]

    O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type," AMS Translation of Mathematical Monographs 23, 1968.

    [22]

    J.-L. Lions, Remarques sur les équations différentielles ordinaires, Osaka Math. J., 15 (1963), 131-142.

    [23]

    E. Meyer-Peter and R. Müller, Formulas for bed-load transport, The Second Meeting of the International Association for Hydraulic Structures, Appendix 2, (1948), 39-44.

    [24]

    G. NadinExistence and uniqueness of the solution of a space-time periodic reaction-diffusion, preprint.

    [25]

    G. Nadin, Reaction-diffusion equations in space-time periodic media, C. R. Acad. Sci. Paris Ser. I, 345 (2007), 489-493.

    [26]

    G. Namah and J.-M. Roquejoffre, Convergence to periodic fronts in a class of semilinearparabolic equations, Nonlinear Diff. Equ. Appl., 4 (1997), 521-536.

    [27]

    G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.doi: 10.1137/0520043.

    [28]

    J. R. Norris, Long-time behaviour of heat flow: Global estimates and exact asymptotics, Arch. Rat. Mech. Anal., 140 (1997), 161-195.doi: 10.1007/s002050050063.

    [29]

    E. Pardoux, Homogenization of linear and semilinear second order parabolic pdes with periodic coefficients: A probolist approach, J. Funct. Anal., 167 (1999), 498-520.doi: 10.1006/jfan.1999.3441.

    [30]

    D. G. Park and H. Tanabe, On the asymptotic behavior of solutions of linear parabolic equations in $l^1$ space, Annali Delle Scuola Normale superiore di Pisa Classe di Scienze, 14 (1987), 587-611.

    [31]

    F. Petitta, Large time behavior for solutions of nonlinear parabolic problems with sign-changing measure data, Elec. J. Diff. Equ., 2008 (2008), 1-10.

    [32]

    H. Tanabe, Convergence to a stationary state of the solution of some kind of differential equations in a banach space, Proc. Japan Acad., 37 (1961), 127-130.doi: 10.3792/pja/1195523776.

    [33]

    L. C. Van Rijn, "Handbook on Sediment Transport by Current and Waves," Tech. Report H461:12.1-12.27, Delft Hydraulics, 1989.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return