July  2011, 29(3): 1041-1083. doi: 10.3934/dcds.2011.29.1041

Periodic solutions of parabolic problems with hysteresis on the boundary

1. 

Free University Berlin - Institute for Mathematics 1, Arnimallee 2-6, 14195 Berlin, Germany

Received  January 2010 Revised  June 2010 Published  November 2010

We consider a parabolic problem with discontinuous hysteresis on the boundary, arising in modelling various thermal control processes. By reducing the problem to an infinite dynamical system, sufficient conditions for the existence and uniqueness of a periodic solution are found. Global stability of the periodic solution is proved.
Citation: Pavel Gurevich. Periodic solutions of parabolic problems with hysteresis on the boundary. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1041-1083. doi: 10.3934/dcds.2011.29.1041
References:
[1]

M. S. Agranovich, On series in root vectors of operators defined by forms with a selfadjoint principal part,, Funktsional. Anal. i Prilozhen., 28 (1994), 1.   Google Scholar

[2]

H. W. Alt, On the thermostat problem,, Control Cyb., 14 (1985), 171.   Google Scholar

[3]

P.-A. Bliman and A. M. Krasnosel'skii, Periodic solutions of linear systems coupled with relay,, in, 30 (1997), 687.  doi: 10.1016/S0362-546X(96)00372-0.  Google Scholar

[4]

M. Brokate and A. Friedman, Optimal design for heat conduction problems with hysteresis,, SIAM J. Control Opt., 27 (1989), 697.  doi: 10.1137/0327037.  Google Scholar

[5]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Springer, (1996).   Google Scholar

[6]

P. Colli, M. Grasselli and J. Sprekels, Automatic control via thermostats of a hyperbolic Stefan problem with memory,, Appl. Math. Optim., 39 (1999), 229.  doi: 10.1007/s002459900105.  Google Scholar

[7]

M. Fečkan, Periodic solutions in systems at resonances with small relay hysteresis,, Math. Slovaca, 49 (1999), 41.   Google Scholar

[8]

A. Friedman and K.-H. Hoffmann, Control of free boundary problems with hysteresis,, SIAM J. Control. Optim., 26 (1988), 42.  doi: 10.1137/0326003.  Google Scholar

[9]

A. Friedman and L.-S. Jiang, Periodic solutions for a thermostat control problem,, Commun. Partial Differential Equations, 13 (1988), 515.  doi: 10.1080/03605308808820551.  Google Scholar

[10]

K. Glashoff and J. Sprekels, An application of Glicksberg's theorem to set-valued integral equations arising in the theory of thermostats,, SIAM J. Math. Anal., 12 (1981), 477.  doi: 10.1137/0512041.  Google Scholar

[11]

K. Glashoff and J. Sprekels, The regulation of temperature by thermostats and set-valued integral equations,, J. Integral Equ., 4 (1982), 95.   Google Scholar

[12]

I. G. Götz, K.-H. Hoffmann and A. M. Meirmanov, Periodic solutions of the Stefan problem with hysteresis-type boundary conditions,, Manuscripta Math., 78 (1983), 179.  doi: 10.1007/BF02599308.  Google Scholar

[13]

P. L. Gurevich and W. Jäger, Parabolic problems with the Preisach hysteresis operator in boundary conditions,, J. Differential Equations, 47 (2009), 2966.  doi: 10.1016/j.jde.2009.07.033.  Google Scholar

[14]

P. L. Gurevich, W. Jäger and A. L. Skubachevskii, On periodicity of solutions for thermocontrol problems with hysteresis-type switches,, SIAM J. Math. Anal., 41 (2009), 733.  doi: 10.1137/080718905.  Google Scholar

[15]

K.-H. Hoffmann, M. Niezgódka and J. Sprekels, Feedback control via thermostats of multidimensional two-phase Stefan problems,, Nonlinear Anal., 15 (1990), 955.  doi: 10.1016/0362-546X(90)90078-U.  Google Scholar

[16]

N. Kenmochi and A. Visintin, Asymptotic stability for nonlinear PDEs with hysteresis,, European J. Appl. Math., 5 (1994), 39.   Google Scholar

[17]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis,", Springer-Verlag, (1989).   Google Scholar

[18]

P. Krejči, J. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermo-visco-plasticity,, SIAM J. Math. Anal., 34 (2002), 409.  doi: 10.1137/S0036141001387604.  Google Scholar

[19]

V. B. Lidskii, Summability of series in terms of the principal vectors of non-selfadjoint operators,, Trudy Moskov. Mat. Obsc., 11 (1962), 3.   Google Scholar

[20]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications, Vol. I,", Springer, (1972).   Google Scholar

[21]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications, Vol. II,", Springer, (1972).   Google Scholar

[22]

J. Macki, P. Nistri and P. Zecca, Mathematical models for hysteresis,, SIAM Rev., 35 (1993), 94.  doi: 10.1137/1035005.  Google Scholar

[23]

G. S. Osipenko, M. V. Senkov and S. B. Tikhomirov, Algorithms of construction of invariant manifolds and attractors,, Abstracts Intern. Conf., 101 (2005).   Google Scholar

[24]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Appl. Math. Sci., 44 (1983).   Google Scholar

[25]

V. V. Pod"yapol'skii, Completeness of a system of root functions of a nonlocal problem in $L_p$,, Mat. Zametki, 71 (2002), 878.  doi: 10.1023/A:1015872912925.  Google Scholar

[26]

J. Prüss, Periodic solutions of the thermostat problem,, in Proc. Conf., 1223 (1986), 216.   Google Scholar

[27]

T. I. Seidman, Switching systems and periodicity,, in Proc. Conf., 1394 (1989), 199.   Google Scholar

[28]

S. Varigonda and T. Georgiou, Dynamics of relay relaxation oscillators,, IEEE Trans. Automat. Control, 46 (2001), 65.  doi: 10.1109/9.898696.  Google Scholar

[29]

A. Visintin, "Differential Models of Hysteresis,", Springer-Verlag, (1994).   Google Scholar

[30]

A. Visintin, Quasilinear parabolic P.D.E.s with discontinuous hysteresis,, Annali di Matematica, 185 (2006), 487.  doi: 10.1007/s10231-005-0164-6.  Google Scholar

[31]

L. F. Xu, Two parabolic equations with hysteresis,, J. Partial Differential Equations, 4 (1991), 51.   Google Scholar

show all references

References:
[1]

M. S. Agranovich, On series in root vectors of operators defined by forms with a selfadjoint principal part,, Funktsional. Anal. i Prilozhen., 28 (1994), 1.   Google Scholar

[2]

H. W. Alt, On the thermostat problem,, Control Cyb., 14 (1985), 171.   Google Scholar

[3]

P.-A. Bliman and A. M. Krasnosel'skii, Periodic solutions of linear systems coupled with relay,, in, 30 (1997), 687.  doi: 10.1016/S0362-546X(96)00372-0.  Google Scholar

[4]

M. Brokate and A. Friedman, Optimal design for heat conduction problems with hysteresis,, SIAM J. Control Opt., 27 (1989), 697.  doi: 10.1137/0327037.  Google Scholar

[5]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Springer, (1996).   Google Scholar

[6]

P. Colli, M. Grasselli and J. Sprekels, Automatic control via thermostats of a hyperbolic Stefan problem with memory,, Appl. Math. Optim., 39 (1999), 229.  doi: 10.1007/s002459900105.  Google Scholar

[7]

M. Fečkan, Periodic solutions in systems at resonances with small relay hysteresis,, Math. Slovaca, 49 (1999), 41.   Google Scholar

[8]

A. Friedman and K.-H. Hoffmann, Control of free boundary problems with hysteresis,, SIAM J. Control. Optim., 26 (1988), 42.  doi: 10.1137/0326003.  Google Scholar

[9]

A. Friedman and L.-S. Jiang, Periodic solutions for a thermostat control problem,, Commun. Partial Differential Equations, 13 (1988), 515.  doi: 10.1080/03605308808820551.  Google Scholar

[10]

K. Glashoff and J. Sprekels, An application of Glicksberg's theorem to set-valued integral equations arising in the theory of thermostats,, SIAM J. Math. Anal., 12 (1981), 477.  doi: 10.1137/0512041.  Google Scholar

[11]

K. Glashoff and J. Sprekels, The regulation of temperature by thermostats and set-valued integral equations,, J. Integral Equ., 4 (1982), 95.   Google Scholar

[12]

I. G. Götz, K.-H. Hoffmann and A. M. Meirmanov, Periodic solutions of the Stefan problem with hysteresis-type boundary conditions,, Manuscripta Math., 78 (1983), 179.  doi: 10.1007/BF02599308.  Google Scholar

[13]

P. L. Gurevich and W. Jäger, Parabolic problems with the Preisach hysteresis operator in boundary conditions,, J. Differential Equations, 47 (2009), 2966.  doi: 10.1016/j.jde.2009.07.033.  Google Scholar

[14]

P. L. Gurevich, W. Jäger and A. L. Skubachevskii, On periodicity of solutions for thermocontrol problems with hysteresis-type switches,, SIAM J. Math. Anal., 41 (2009), 733.  doi: 10.1137/080718905.  Google Scholar

[15]

K.-H. Hoffmann, M. Niezgódka and J. Sprekels, Feedback control via thermostats of multidimensional two-phase Stefan problems,, Nonlinear Anal., 15 (1990), 955.  doi: 10.1016/0362-546X(90)90078-U.  Google Scholar

[16]

N. Kenmochi and A. Visintin, Asymptotic stability for nonlinear PDEs with hysteresis,, European J. Appl. Math., 5 (1994), 39.   Google Scholar

[17]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis,", Springer-Verlag, (1989).   Google Scholar

[18]

P. Krejči, J. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermo-visco-plasticity,, SIAM J. Math. Anal., 34 (2002), 409.  doi: 10.1137/S0036141001387604.  Google Scholar

[19]

V. B. Lidskii, Summability of series in terms of the principal vectors of non-selfadjoint operators,, Trudy Moskov. Mat. Obsc., 11 (1962), 3.   Google Scholar

[20]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications, Vol. I,", Springer, (1972).   Google Scholar

[21]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications, Vol. II,", Springer, (1972).   Google Scholar

[22]

J. Macki, P. Nistri and P. Zecca, Mathematical models for hysteresis,, SIAM Rev., 35 (1993), 94.  doi: 10.1137/1035005.  Google Scholar

[23]

G. S. Osipenko, M. V. Senkov and S. B. Tikhomirov, Algorithms of construction of invariant manifolds and attractors,, Abstracts Intern. Conf., 101 (2005).   Google Scholar

[24]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Appl. Math. Sci., 44 (1983).   Google Scholar

[25]

V. V. Pod"yapol'skii, Completeness of a system of root functions of a nonlocal problem in $L_p$,, Mat. Zametki, 71 (2002), 878.  doi: 10.1023/A:1015872912925.  Google Scholar

[26]

J. Prüss, Periodic solutions of the thermostat problem,, in Proc. Conf., 1223 (1986), 216.   Google Scholar

[27]

T. I. Seidman, Switching systems and periodicity,, in Proc. Conf., 1394 (1989), 199.   Google Scholar

[28]

S. Varigonda and T. Georgiou, Dynamics of relay relaxation oscillators,, IEEE Trans. Automat. Control, 46 (2001), 65.  doi: 10.1109/9.898696.  Google Scholar

[29]

A. Visintin, "Differential Models of Hysteresis,", Springer-Verlag, (1994).   Google Scholar

[30]

A. Visintin, Quasilinear parabolic P.D.E.s with discontinuous hysteresis,, Annali di Matematica, 185 (2006), 487.  doi: 10.1007/s10231-005-0164-6.  Google Scholar

[31]

L. F. Xu, Two parabolic equations with hysteresis,, J. Partial Differential Equations, 4 (1991), 51.   Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[3]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[15]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[16]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[17]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[18]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]