July  2011, 29(3): 1041-1083. doi: 10.3934/dcds.2011.29.1041

Periodic solutions of parabolic problems with hysteresis on the boundary

1. 

Free University Berlin - Institute for Mathematics 1, Arnimallee 2-6, 14195 Berlin, Germany

Received  January 2010 Revised  June 2010 Published  November 2010

We consider a parabolic problem with discontinuous hysteresis on the boundary, arising in modelling various thermal control processes. By reducing the problem to an infinite dynamical system, sufficient conditions for the existence and uniqueness of a periodic solution are found. Global stability of the periodic solution is proved.
Citation: Pavel Gurevich. Periodic solutions of parabolic problems with hysteresis on the boundary. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1041-1083. doi: 10.3934/dcds.2011.29.1041
References:
[1]

M. S. Agranovich, On series in root vectors of operators defined by forms with a selfadjoint principal part, Funktsional. Anal. i Prilozhen., 28 (1994), 1-21; English transl. in Funct. Anal. Appl., 28 (1994), 151-167.

[2]

H. W. Alt, On the thermostat problem, Control Cyb., 14 (1985), 171-193.

[3]

P.-A. Bliman and A. M. Krasnosel'skii, Periodic solutions of linear systems coupled with relay, in "Proceedings of the Second World Congress of Nonlinear Analysts, Part 2 (Athens, 1996)," Nonlinear Anal., 30 (1997), 687-696. doi: 10.1016/S0362-546X(96)00372-0.

[4]

M. Brokate and A. Friedman, Optimal design for heat conduction problems with hysteresis, SIAM J. Control Opt., 27 (1989), 697-717. doi: 10.1137/0327037.

[5]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Springer, Berlin, 1996.

[6]

P. Colli, M. Grasselli and J. Sprekels, Automatic control via thermostats of a hyperbolic Stefan problem with memory, Appl. Math. Optim., 39 (1999), 229-255. doi: 10.1007/s002459900105.

[7]

M. Fečkan, Periodic solutions in systems at resonances with small relay hysteresis, Math. Slovaca, 49 (1999), 41-52.

[8]

A. Friedman and K.-H. Hoffmann, Control of free boundary problems with hysteresis, SIAM J. Control. Optim., 26 (1988), 42-55. doi: 10.1137/0326003.

[9]

A. Friedman and L.-S. Jiang, Periodic solutions for a thermostat control problem, Commun. Partial Differential Equations, 13 (1988), 515-550. doi: 10.1080/03605308808820551.

[10]

K. Glashoff and J. Sprekels, An application of Glicksberg's theorem to set-valued integral equations arising in the theory of thermostats, SIAM J. Math. Anal., 12 (1981), 477-486. doi: 10.1137/0512041.

[11]

K. Glashoff and J. Sprekels, The regulation of temperature by thermostats and set-valued integral equations, J. Integral Equ., 4 (1982), 95-112.

[12]

I. G. Götz, K.-H. Hoffmann and A. M. Meirmanov, Periodic solutions of the Stefan problem with hysteresis-type boundary conditions, Manuscripta Math., 78 (1983), 179-199. doi: 10.1007/BF02599308.

[13]

P. L. Gurevich and W. Jäger, Parabolic problems with the Preisach hysteresis operator in boundary conditions, J. Differential Equations, 47 (2009), 2966-3010. doi: 10.1016/j.jde.2009.07.033.

[14]

P. L. Gurevich, W. Jäger and A. L. Skubachevskii, On periodicity of solutions for thermocontrol problems with hysteresis-type switches, SIAM J. Math. Anal., 41 (2009), 733-752. doi: 10.1137/080718905.

[15]

K.-H. Hoffmann, M. Niezgódka and J. Sprekels, Feedback control via thermostats of multidimensional two-phase Stefan problems, Nonlinear Anal., 15 (1990), 955-976. doi: 10.1016/0362-546X(90)90078-U.

[16]

N. Kenmochi and A. Visintin, Asymptotic stability for nonlinear PDEs with hysteresis, European J. Appl. Math., 5 (1994), 39-56.

[17]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis," Springer-Verlag, Berlin-Heidelberg-New York, 1989; (Translated from Russian: "Sistemy s Gisterezisom," Nauka, Moscow, 1983).

[18]

P. Krejči, J. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermo-visco-plasticity, SIAM J. Math. Anal., 34 (2002), 409-434. doi: 10.1137/S0036141001387604.

[19]

V. B. Lidskii, Summability of series in terms of the principal vectors of non-selfadjoint operators, Trudy Moskov. Mat. Obsc., 11 (1962), 3-35.

[20]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications, Vol. I," Springer, Berlin-Heidelberg-New York, 1972.

[21]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications, Vol. II," Springer, Berlin-Heidelberg-New York, 1972.

[22]

J. Macki, P. Nistri and P. Zecca, Mathematical models for hysteresis, SIAM Rev., 35 (1993), 94-123. doi: 10.1137/1035005.

[23]

G. S. Osipenko, M. V. Senkov and S. B. Tikhomirov, Algorithms of construction of invariant manifolds and attractors, Abstracts Intern. Conf. "Fundamental Research in Technical Universities," 101 (2005).

[24]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Appl. Math. Sci., 44, Springer, New York, 1983.

[25]

V. V. Pod"yapol'skii, Completeness of a system of root functions of a nonlocal problem in $L_p$, Mat. Zametki, 71 (2002), 878-889; English transl. in Math. Notes, 71 (2002), 804-814. doi: 10.1023/A:1015872912925.

[26]

J. Prüss, Periodic solutions of the thermostat problem, in Proc. Conf. "Differential Equations in Banach Spaces" (Bologna, July 1985), Lecture Notes Math., 1223, Springer-Verlag, Berlin - New York, (1986), 216-226.

[27]

T. I. Seidman, Switching systems and periodicity, in Proc. Conf. "Nonlinear Semigroups, Partial Differential Equations and Attractors" (Washington, DC, 1987), Lecture Notes Math., 1394, Springer-Verlag, Berlin - New York, (1989), 199-210.

[28]

S. Varigonda and T. Georgiou, Dynamics of relay relaxation oscillators, IEEE Trans. Automat. Control, 46 (2001), 65-77. doi: 10.1109/9.898696.

[29]

A. Visintin, "Differential Models of Hysteresis," Springer-Verlag, Berlin - Heidelberg, 1994.

[30]

A. Visintin, Quasilinear parabolic P.D.E.s with discontinuous hysteresis, Annali di Matematica, 185 (2006), 487-519. doi: 10.1007/s10231-005-0164-6.

[31]

L. F. Xu, Two parabolic equations with hysteresis, J. Partial Differential Equations, 4 (1991), 51-65.

show all references

References:
[1]

M. S. Agranovich, On series in root vectors of operators defined by forms with a selfadjoint principal part, Funktsional. Anal. i Prilozhen., 28 (1994), 1-21; English transl. in Funct. Anal. Appl., 28 (1994), 151-167.

[2]

H. W. Alt, On the thermostat problem, Control Cyb., 14 (1985), 171-193.

[3]

P.-A. Bliman and A. M. Krasnosel'skii, Periodic solutions of linear systems coupled with relay, in "Proceedings of the Second World Congress of Nonlinear Analysts, Part 2 (Athens, 1996)," Nonlinear Anal., 30 (1997), 687-696. doi: 10.1016/S0362-546X(96)00372-0.

[4]

M. Brokate and A. Friedman, Optimal design for heat conduction problems with hysteresis, SIAM J. Control Opt., 27 (1989), 697-717. doi: 10.1137/0327037.

[5]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Springer, Berlin, 1996.

[6]

P. Colli, M. Grasselli and J. Sprekels, Automatic control via thermostats of a hyperbolic Stefan problem with memory, Appl. Math. Optim., 39 (1999), 229-255. doi: 10.1007/s002459900105.

[7]

M. Fečkan, Periodic solutions in systems at resonances with small relay hysteresis, Math. Slovaca, 49 (1999), 41-52.

[8]

A. Friedman and K.-H. Hoffmann, Control of free boundary problems with hysteresis, SIAM J. Control. Optim., 26 (1988), 42-55. doi: 10.1137/0326003.

[9]

A. Friedman and L.-S. Jiang, Periodic solutions for a thermostat control problem, Commun. Partial Differential Equations, 13 (1988), 515-550. doi: 10.1080/03605308808820551.

[10]

K. Glashoff and J. Sprekels, An application of Glicksberg's theorem to set-valued integral equations arising in the theory of thermostats, SIAM J. Math. Anal., 12 (1981), 477-486. doi: 10.1137/0512041.

[11]

K. Glashoff and J. Sprekels, The regulation of temperature by thermostats and set-valued integral equations, J. Integral Equ., 4 (1982), 95-112.

[12]

I. G. Götz, K.-H. Hoffmann and A. M. Meirmanov, Periodic solutions of the Stefan problem with hysteresis-type boundary conditions, Manuscripta Math., 78 (1983), 179-199. doi: 10.1007/BF02599308.

[13]

P. L. Gurevich and W. Jäger, Parabolic problems with the Preisach hysteresis operator in boundary conditions, J. Differential Equations, 47 (2009), 2966-3010. doi: 10.1016/j.jde.2009.07.033.

[14]

P. L. Gurevich, W. Jäger and A. L. Skubachevskii, On periodicity of solutions for thermocontrol problems with hysteresis-type switches, SIAM J. Math. Anal., 41 (2009), 733-752. doi: 10.1137/080718905.

[15]

K.-H. Hoffmann, M. Niezgódka and J. Sprekels, Feedback control via thermostats of multidimensional two-phase Stefan problems, Nonlinear Anal., 15 (1990), 955-976. doi: 10.1016/0362-546X(90)90078-U.

[16]

N. Kenmochi and A. Visintin, Asymptotic stability for nonlinear PDEs with hysteresis, European J. Appl. Math., 5 (1994), 39-56.

[17]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis," Springer-Verlag, Berlin-Heidelberg-New York, 1989; (Translated from Russian: "Sistemy s Gisterezisom," Nauka, Moscow, 1983).

[18]

P. Krejči, J. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermo-visco-plasticity, SIAM J. Math. Anal., 34 (2002), 409-434. doi: 10.1137/S0036141001387604.

[19]

V. B. Lidskii, Summability of series in terms of the principal vectors of non-selfadjoint operators, Trudy Moskov. Mat. Obsc., 11 (1962), 3-35.

[20]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications, Vol. I," Springer, Berlin-Heidelberg-New York, 1972.

[21]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications, Vol. II," Springer, Berlin-Heidelberg-New York, 1972.

[22]

J. Macki, P. Nistri and P. Zecca, Mathematical models for hysteresis, SIAM Rev., 35 (1993), 94-123. doi: 10.1137/1035005.

[23]

G. S. Osipenko, M. V. Senkov and S. B. Tikhomirov, Algorithms of construction of invariant manifolds and attractors, Abstracts Intern. Conf. "Fundamental Research in Technical Universities," 101 (2005).

[24]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Appl. Math. Sci., 44, Springer, New York, 1983.

[25]

V. V. Pod"yapol'skii, Completeness of a system of root functions of a nonlocal problem in $L_p$, Mat. Zametki, 71 (2002), 878-889; English transl. in Math. Notes, 71 (2002), 804-814. doi: 10.1023/A:1015872912925.

[26]

J. Prüss, Periodic solutions of the thermostat problem, in Proc. Conf. "Differential Equations in Banach Spaces" (Bologna, July 1985), Lecture Notes Math., 1223, Springer-Verlag, Berlin - New York, (1986), 216-226.

[27]

T. I. Seidman, Switching systems and periodicity, in Proc. Conf. "Nonlinear Semigroups, Partial Differential Equations and Attractors" (Washington, DC, 1987), Lecture Notes Math., 1394, Springer-Verlag, Berlin - New York, (1989), 199-210.

[28]

S. Varigonda and T. Georgiou, Dynamics of relay relaxation oscillators, IEEE Trans. Automat. Control, 46 (2001), 65-77. doi: 10.1109/9.898696.

[29]

A. Visintin, "Differential Models of Hysteresis," Springer-Verlag, Berlin - Heidelberg, 1994.

[30]

A. Visintin, Quasilinear parabolic P.D.E.s with discontinuous hysteresis, Annali di Matematica, 185 (2006), 487-519. doi: 10.1007/s10231-005-0164-6.

[31]

L. F. Xu, Two parabolic equations with hysteresis, J. Partial Differential Equations, 4 (1991), 51-65.

[1]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[2]

E. N. Dancer, Norimichi Hirano. Existence of stable and unstable periodic solutions for semilinear parabolic problems. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 207-216. doi: 10.3934/dcds.1997.3.207

[3]

Youssef Amal, Martin Campos Pinto. Global solutions for an age-dependent model of nucleation, growth and ageing with hysteresis. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 517-535. doi: 10.3934/dcdsb.2010.13.517

[4]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[5]

Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580

[6]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[7]

Elisabetta Rocca, Giulio Schimperna. Global attractor for a parabolic-hyperbolic Penrose-Fife phase field system. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1193-1214. doi: 10.3934/dcds.2006.15.1193

[8]

Maria Assunta Pozio, Fabio Punzo, Alberto Tesei. Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 891-916. doi: 10.3934/dcds.2011.30.891

[9]

Maria Assunta Pozio, Alberto Tesei. On the uniqueness of bounded solutions to singular parabolic problems. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 117-137. doi: 10.3934/dcds.2005.13.117

[10]

Kazuhiro Ishige, Paolo Salani. On a new kind of convexity for solutions of parabolic problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 851-864. doi: 10.3934/dcdss.2011.4.851

[11]

Shiqing Zhang, Qing Zhou. Nonplanar and noncollision periodic solutions for $N$-body problems. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 679-685. doi: 10.3934/dcds.2004.10.679

[12]

Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579

[13]

Emil Minchev, Mitsuharu Ôtani. $L^∞$-energy method for a parabolic system with convection and hysteresis effect. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1613-1632. doi: 10.3934/cpaa.2018077

[14]

Tetsutaro Shibata. Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2139-2147. doi: 10.3934/cpaa.2018102

[15]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[16]

Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160

[17]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[18]

Fabio Punzo. Global solutions of semilinear parabolic equations with drift term on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022030

[19]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

[20]

Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (90)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]