July  2011, 29(3): 1085-1096. doi: 10.3934/dcds.2011.29.1085

Euler-Poisson equations related to general compressible rotating fluids

1. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China, China

Received  March 2010 Revised  August 2010 Published  November 2010

This paper is mainly concerned with Euler-Poisson equations modeling Newtonian stars. We establish the existence of rotating star solutions for general compressible fluids with prescribed angular velocity law, which is the main point distinguished with the case with prescribed angular momentum per unit mass. The compactness of any minimizing sequence is established, which is important from the stability point of view.
Citation: Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085
References:
[1]

J. F. G. Auchmuty, Existence of equilibrium figures,, Arch. Rational Mech. Anal., 65 (1977), 249.  doi: 10.1007/BF00280443.  Google Scholar

[2]

J. F. G. Auchmuty, The global branching of rotating stars,, Arch. Rational Mech. Anal., 114 (1991), 179.  doi: 10.1007/BF00375402.  Google Scholar

[3]

J. F. G. Auchmuty and R. Beals, Variation solutions of some non-linear free boundary problems,, Arch. Rational Mech. Anal., 43 (1971), 255.  doi: 10.1007/BF00250465.  Google Scholar

[4]

J. F. G. Auchmuty and R. Beals, Models of rotating stars,, Astrophysical J., 165 (1971), 79.  doi: 10.1086/180721.  Google Scholar

[5]

L. A. Caffarelli and A. Friedman, The shape of axisymmetric rotating fluid,, J. Funct. Anal., 35 (1980), 109.  doi: 10.1016/0022-1236(80)90082-8.  Google Scholar

[6]

S. Chandrasekhar, "Introduction to the Stellar Structure,", University of Chicago Press, (1939).   Google Scholar

[7]

S. Chandrasekhar, "Ellipsoidal Figures of Equilibrium,", Dover Publication Inc., (1987).   Google Scholar

[8]

S. Chanillo and Y. Y. Li, On diameters of uniformly rotating stars,, Comm. Math. Phys., 166 (1994), 417.  doi: 10.1007/BF02112323.  Google Scholar

[9]

A. Friedman and B. Turkington, Asymptotic estimates for an axisymmetric rotating fluid,, J. Fun. Anal., 37 (1980), 136.  doi: 10.1016/0022-1236(80)90038-5.  Google Scholar

[10]

A. Friedman and B. Turkington, The oblateness of an axisymmetric rotating fluid,, Indiana Univ. Math. J., 29 (1980), 777.  doi: 10.1512/iumj.1980.29.29056.  Google Scholar

[11]

A. Friedman and B. Turkington, Existence and dimensions of a rotating white dwarf,, J. Diff. Equations, 42 (1981), 414.  doi: 10.1016/0022-0396(81)90114-5.  Google Scholar

[12]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2nd edition, (1983).   Google Scholar

[13]

G. H. Hardy, J. E. Littlewood and G. Polya, "Inequality,", Cambridge Univ. Press, (1934).   Google Scholar

[14]

J. Jang, Nonlinear instability in gravitational Euler-Poisson system for $\gamma=\frac{6}{5}$,, Arch. Rational Mech. Anal., 188 (2008), 265.  doi: 10.1007/s00205-007-0086-0.  Google Scholar

[15]

H. G. Li and J. G. Bao, Existence of the rotating stars with prescribed angular velocity law,, to appear in Houston J. Math., ().   Google Scholar

[16]

Y. Y. Li, On uniformly rotating stars,, Arch. Rational Mech. Anal., 115 (1991), 367.  doi: 10.1007/BF00375280.  Google Scholar

[17]

P. L. Lions, The concentration-compactness principle in the calculus of variation, The locally case, part I,, Ann. I. H. Anal. Nonli., 1 (1984), 109.   Google Scholar

[18]

P. L. Lions, Minimization problems in $L^1(\bb R^3)$,, J. Funct. Anal., 41 (1981), 236.  doi: 10.1016/0022-1236(81)90089-6.  Google Scholar

[19]

T. Luo and J. Smoller, Rotating fluids with self-gravitation in bounded domains,, Arch. Rational Mech. Anal., 173 (2004), 345.   Google Scholar

[20]

T. Luo and J. Smoller, Nonlinear dynamical stability of Newtonian rotating white dwarfs and supermassive stars,, Comm. Math. Physics, 284 (2008), 425.  doi: 10.1007/s00220-008-0569-3.  Google Scholar

[21]

T. Luo and J. Smoller, Existence and nonlinear stability of rotating star solutions of the compressible Euler-Poisson equations,, Arch. Rational Mech. Anal., 191 (2009), 447.  doi: 10.1007/s00205-007-0108-y.  Google Scholar

[22]

R. J. McCann, Stable rotating binary stars and fluid in a tube,, Houston J. Math., 32 (2006), 603.   Google Scholar

[23]

G. Rein, Reduction and a concentration-compactness principle for energy-Casimir functionals,, SIAM J. Math. Anal., 33 (2001), 896.  doi: 10.1137/P0036141001389275.  Google Scholar

[24]

S. H. Shapiro and S. A. Teukolsky, "Black Holes, White Dwarfs, and Neutron Stars,", WILEY-VCH, (1983).  doi: 10.1002/9783527617661.  Google Scholar

[25]

J. L. Tassoul, "Theory of Rotating Stars,", Princeton Univ. Press, (1978).   Google Scholar

[26]

S. Weinberg, "Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity,", John Wiley and Sons, (1972).   Google Scholar

show all references

References:
[1]

J. F. G. Auchmuty, Existence of equilibrium figures,, Arch. Rational Mech. Anal., 65 (1977), 249.  doi: 10.1007/BF00280443.  Google Scholar

[2]

J. F. G. Auchmuty, The global branching of rotating stars,, Arch. Rational Mech. Anal., 114 (1991), 179.  doi: 10.1007/BF00375402.  Google Scholar

[3]

J. F. G. Auchmuty and R. Beals, Variation solutions of some non-linear free boundary problems,, Arch. Rational Mech. Anal., 43 (1971), 255.  doi: 10.1007/BF00250465.  Google Scholar

[4]

J. F. G. Auchmuty and R. Beals, Models of rotating stars,, Astrophysical J., 165 (1971), 79.  doi: 10.1086/180721.  Google Scholar

[5]

L. A. Caffarelli and A. Friedman, The shape of axisymmetric rotating fluid,, J. Funct. Anal., 35 (1980), 109.  doi: 10.1016/0022-1236(80)90082-8.  Google Scholar

[6]

S. Chandrasekhar, "Introduction to the Stellar Structure,", University of Chicago Press, (1939).   Google Scholar

[7]

S. Chandrasekhar, "Ellipsoidal Figures of Equilibrium,", Dover Publication Inc., (1987).   Google Scholar

[8]

S. Chanillo and Y. Y. Li, On diameters of uniformly rotating stars,, Comm. Math. Phys., 166 (1994), 417.  doi: 10.1007/BF02112323.  Google Scholar

[9]

A. Friedman and B. Turkington, Asymptotic estimates for an axisymmetric rotating fluid,, J. Fun. Anal., 37 (1980), 136.  doi: 10.1016/0022-1236(80)90038-5.  Google Scholar

[10]

A. Friedman and B. Turkington, The oblateness of an axisymmetric rotating fluid,, Indiana Univ. Math. J., 29 (1980), 777.  doi: 10.1512/iumj.1980.29.29056.  Google Scholar

[11]

A. Friedman and B. Turkington, Existence and dimensions of a rotating white dwarf,, J. Diff. Equations, 42 (1981), 414.  doi: 10.1016/0022-0396(81)90114-5.  Google Scholar

[12]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2nd edition, (1983).   Google Scholar

[13]

G. H. Hardy, J. E. Littlewood and G. Polya, "Inequality,", Cambridge Univ. Press, (1934).   Google Scholar

[14]

J. Jang, Nonlinear instability in gravitational Euler-Poisson system for $\gamma=\frac{6}{5}$,, Arch. Rational Mech. Anal., 188 (2008), 265.  doi: 10.1007/s00205-007-0086-0.  Google Scholar

[15]

H. G. Li and J. G. Bao, Existence of the rotating stars with prescribed angular velocity law,, to appear in Houston J. Math., ().   Google Scholar

[16]

Y. Y. Li, On uniformly rotating stars,, Arch. Rational Mech. Anal., 115 (1991), 367.  doi: 10.1007/BF00375280.  Google Scholar

[17]

P. L. Lions, The concentration-compactness principle in the calculus of variation, The locally case, part I,, Ann. I. H. Anal. Nonli., 1 (1984), 109.   Google Scholar

[18]

P. L. Lions, Minimization problems in $L^1(\bb R^3)$,, J. Funct. Anal., 41 (1981), 236.  doi: 10.1016/0022-1236(81)90089-6.  Google Scholar

[19]

T. Luo and J. Smoller, Rotating fluids with self-gravitation in bounded domains,, Arch. Rational Mech. Anal., 173 (2004), 345.   Google Scholar

[20]

T. Luo and J. Smoller, Nonlinear dynamical stability of Newtonian rotating white dwarfs and supermassive stars,, Comm. Math. Physics, 284 (2008), 425.  doi: 10.1007/s00220-008-0569-3.  Google Scholar

[21]

T. Luo and J. Smoller, Existence and nonlinear stability of rotating star solutions of the compressible Euler-Poisson equations,, Arch. Rational Mech. Anal., 191 (2009), 447.  doi: 10.1007/s00205-007-0108-y.  Google Scholar

[22]

R. J. McCann, Stable rotating binary stars and fluid in a tube,, Houston J. Math., 32 (2006), 603.   Google Scholar

[23]

G. Rein, Reduction and a concentration-compactness principle for energy-Casimir functionals,, SIAM J. Math. Anal., 33 (2001), 896.  doi: 10.1137/P0036141001389275.  Google Scholar

[24]

S. H. Shapiro and S. A. Teukolsky, "Black Holes, White Dwarfs, and Neutron Stars,", WILEY-VCH, (1983).  doi: 10.1002/9783527617661.  Google Scholar

[25]

J. L. Tassoul, "Theory of Rotating Stars,", Princeton Univ. Press, (1978).   Google Scholar

[26]

S. Weinberg, "Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity,", John Wiley and Sons, (1972).   Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[3]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[4]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[5]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]