January  2011, 29(1): 109-140. doi: 10.3934/dcds.2011.29.109

Detectable canard cycles with singular slow dynamics of any order at the turning point

1. 

Hasselt University, Campus Diepenbeek, Agoralaan-Gebouw D, B-3590 Diepenbeek, Belgium

2. 

Hasselt University, Campus Diepenbeek, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium

Received  January 2010 Revised  April 2010 Published  September 2010

This paper deals with the study of limit cycles that appear in a class of planar slow-fast systems, near a "canard'' limit periodic set of FSTS-type. Limit periodic sets of FSTS-type are closed orbits, composed of a Fast branch, an attracting Slow branch, a Turning point, and a repelling Slow branch. Techniques to bound the number of limit cycles near a FSTS-l.p.s. are based on the study of the so-called slow divergence integral, calculated along the slow branches. In this paper, we extend the technique to the case where the slow dynamics has singularities of any (finite) order that accumulate to the turning point, and in which case the slow divergence integral becomes unbounded. Bounds on the number of limit cycles near the FSTS-l.p.s. are derived by examining appropriate derivatives of the slow divergence integral.
Citation: P. De Maesschalck, Freddy Dumortier. Detectable canard cycles with singular slow dynamics of any order at the turning point. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 109-140. doi: 10.3934/dcds.2011.29.109
References:
[1]

P. Bonckaert, Partially hyperbolic fixed points with constraints,, Trans. Amer. Math. Soc., 348 (1996), 997.  doi: doi:10.1090/S0002-9947-96-01469-9.  Google Scholar

[2]

P. Bonckaert, P. De Maesschalck and F. Dumortier, Well adapted normal linearization in singular perturbation problems,, preprint., ().   Google Scholar

[3]

P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point,, J. Differential Equations, ().  doi: doi:10.1016/j.jde.2009.11.009.  Google Scholar

[4]

P. De Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations,, J. Differential Equations, ().  doi: doi:10.1016/j.jde.2010.07.022.  Google Scholar

[5]

P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points,, J. Differential Equations, 215 (2005), 225.  doi: doi:10.1016/j.jde.2005.01.004.  Google Scholar

[6]

P. De Maesschalck and F. Dumortier, Canard solutions at non-generic turning points,, Trans. Amer. Math. Soc., 358 (2006), 2291.  doi: doi:10.1090/S0002-9947-05-03839-0.  Google Scholar

[7]

P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 265.  doi: doi:10.1017/S0308210506000199.  Google Scholar

[8]

F. Dumortier, Slow divergence integral and balanced canard solutions,, Qualitative Theory and Dynamical Systems, ().   Google Scholar

[9]

F. Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, J. Differential Equations, 224 (2006), 296.  doi: doi:10.1016/j.jde.2005.08.011.  Google Scholar

[10]

M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion,, J. Differential Equations, 174 (2001), 312.  doi: doi:10.1006/jdeq.2000.3929.  Google Scholar

[11]

D. Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields,, Mem. Amer. Math. Soc., 158 (2002).   Google Scholar

[12]

R. Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441.  doi: doi:10.3934/dcds.2007.17.441.  Google Scholar

show all references

References:
[1]

P. Bonckaert, Partially hyperbolic fixed points with constraints,, Trans. Amer. Math. Soc., 348 (1996), 997.  doi: doi:10.1090/S0002-9947-96-01469-9.  Google Scholar

[2]

P. Bonckaert, P. De Maesschalck and F. Dumortier, Well adapted normal linearization in singular perturbation problems,, preprint., ().   Google Scholar

[3]

P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point,, J. Differential Equations, ().  doi: doi:10.1016/j.jde.2009.11.009.  Google Scholar

[4]

P. De Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations,, J. Differential Equations, ().  doi: doi:10.1016/j.jde.2010.07.022.  Google Scholar

[5]

P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points,, J. Differential Equations, 215 (2005), 225.  doi: doi:10.1016/j.jde.2005.01.004.  Google Scholar

[6]

P. De Maesschalck and F. Dumortier, Canard solutions at non-generic turning points,, Trans. Amer. Math. Soc., 358 (2006), 2291.  doi: doi:10.1090/S0002-9947-05-03839-0.  Google Scholar

[7]

P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 265.  doi: doi:10.1017/S0308210506000199.  Google Scholar

[8]

F. Dumortier, Slow divergence integral and balanced canard solutions,, Qualitative Theory and Dynamical Systems, ().   Google Scholar

[9]

F. Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, J. Differential Equations, 224 (2006), 296.  doi: doi:10.1016/j.jde.2005.08.011.  Google Scholar

[10]

M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion,, J. Differential Equations, 174 (2001), 312.  doi: doi:10.1006/jdeq.2000.3929.  Google Scholar

[11]

D. Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields,, Mem. Amer. Math. Soc., 158 (2002).   Google Scholar

[12]

R. Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441.  doi: doi:10.3934/dcds.2007.17.441.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[2]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[9]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[16]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[19]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[20]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]