January  2011, 29(1): 109-140. doi: 10.3934/dcds.2011.29.109

Detectable canard cycles with singular slow dynamics of any order at the turning point

1. 

Hasselt University, Campus Diepenbeek, Agoralaan-Gebouw D, B-3590 Diepenbeek, Belgium

2. 

Hasselt University, Campus Diepenbeek, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium

Received  January 2010 Revised  April 2010 Published  September 2010

This paper deals with the study of limit cycles that appear in a class of planar slow-fast systems, near a "canard'' limit periodic set of FSTS-type. Limit periodic sets of FSTS-type are closed orbits, composed of a Fast branch, an attracting Slow branch, a Turning point, and a repelling Slow branch. Techniques to bound the number of limit cycles near a FSTS-l.p.s. are based on the study of the so-called slow divergence integral, calculated along the slow branches. In this paper, we extend the technique to the case where the slow dynamics has singularities of any (finite) order that accumulate to the turning point, and in which case the slow divergence integral becomes unbounded. Bounds on the number of limit cycles near the FSTS-l.p.s. are derived by examining appropriate derivatives of the slow divergence integral.
Citation: P. De Maesschalck, Freddy Dumortier. Detectable canard cycles with singular slow dynamics of any order at the turning point. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 109-140. doi: 10.3934/dcds.2011.29.109
References:
[1]

P. Bonckaert, Partially hyperbolic fixed points with constraints,, Trans. Amer. Math. Soc., 348 (1996), 997. doi: doi:10.1090/S0002-9947-96-01469-9. Google Scholar

[2]

P. Bonckaert, P. De Maesschalck and F. Dumortier, Well adapted normal linearization in singular perturbation problems,, preprint., (). Google Scholar

[3]

P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point,, J. Differential Equations, (). doi: doi:10.1016/j.jde.2009.11.009. Google Scholar

[4]

P. De Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations,, J. Differential Equations, (). doi: doi:10.1016/j.jde.2010.07.022. Google Scholar

[5]

P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points,, J. Differential Equations, 215 (2005), 225. doi: doi:10.1016/j.jde.2005.01.004. Google Scholar

[6]

P. De Maesschalck and F. Dumortier, Canard solutions at non-generic turning points,, Trans. Amer. Math. Soc., 358 (2006), 2291. doi: doi:10.1090/S0002-9947-05-03839-0. Google Scholar

[7]

P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 265. doi: doi:10.1017/S0308210506000199. Google Scholar

[8]

F. Dumortier, Slow divergence integral and balanced canard solutions,, Qualitative Theory and Dynamical Systems, (). Google Scholar

[9]

F. Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, J. Differential Equations, 224 (2006), 296. doi: doi:10.1016/j.jde.2005.08.011. Google Scholar

[10]

M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion,, J. Differential Equations, 174 (2001), 312. doi: doi:10.1006/jdeq.2000.3929. Google Scholar

[11]

D. Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields,, Mem. Amer. Math. Soc., 158 (2002). Google Scholar

[12]

R. Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441. doi: doi:10.3934/dcds.2007.17.441. Google Scholar

show all references

References:
[1]

P. Bonckaert, Partially hyperbolic fixed points with constraints,, Trans. Amer. Math. Soc., 348 (1996), 997. doi: doi:10.1090/S0002-9947-96-01469-9. Google Scholar

[2]

P. Bonckaert, P. De Maesschalck and F. Dumortier, Well adapted normal linearization in singular perturbation problems,, preprint., (). Google Scholar

[3]

P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point,, J. Differential Equations, (). doi: doi:10.1016/j.jde.2009.11.009. Google Scholar

[4]

P. De Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations,, J. Differential Equations, (). doi: doi:10.1016/j.jde.2010.07.022. Google Scholar

[5]

P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points,, J. Differential Equations, 215 (2005), 225. doi: doi:10.1016/j.jde.2005.01.004. Google Scholar

[6]

P. De Maesschalck and F. Dumortier, Canard solutions at non-generic turning points,, Trans. Amer. Math. Soc., 358 (2006), 2291. doi: doi:10.1090/S0002-9947-05-03839-0. Google Scholar

[7]

P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 265. doi: doi:10.1017/S0308210506000199. Google Scholar

[8]

F. Dumortier, Slow divergence integral and balanced canard solutions,, Qualitative Theory and Dynamical Systems, (). Google Scholar

[9]

F. Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, J. Differential Equations, 224 (2006), 296. doi: doi:10.1016/j.jde.2005.08.011. Google Scholar

[10]

M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion,, J. Differential Equations, 174 (2001), 312. doi: doi:10.1006/jdeq.2000.3929. Google Scholar

[11]

D. Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields,, Mem. Amer. Math. Soc., 158 (2002). Google Scholar

[12]

R. Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441. doi: doi:10.3934/dcds.2007.17.441. Google Scholar

[1]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[2]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[3]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[4]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[5]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[6]

Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117

[7]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[8]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[9]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[10]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[11]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[12]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[13]

Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

[14]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[15]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[16]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

[17]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[18]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[19]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[20]

Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]