• Previous Article
    Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups
  • DCDS Home
  • This Issue
  • Next Article
    Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds
July  2011, 29(3): 1113-1139. doi: 10.3934/dcds.2011.29.1113

Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation

1. 

Faculty of Mathematics, Kyushu University, Fukuoka 819-0395

Received  January 2010 Revised  June 2010 Published  November 2010

In this paper we focus on the initial value problem for quasi-linear dissipative plate equation in multi-dimensional space $(n\geq2)$. This equation verifies the decay property of the regularity-loss type, which causes the difficulty in deriving the global a priori estimates of solutions. We overcome this difficulty by employing a time-weighted $L^2$ energy method which makes use of the integrability of $||$(∂$^2_xu_t,$∂$^3_xu)(t)||_{L^{\infty}}$. This $L^\infty$ norm can be controlled by showing the optimal $L^2$ decay estimates for lower-order derivatives of solutions. Thus we obtain the desired a priori estimate which enables us to prove the global existence and asymptotic decay of solutions under smallness and enough regularity assumptions on the initial data. Moreover, we show that the solution can be approximated by a simple-looking function, which is given explicitly in terms of the fundamental solution of a fourth-order linear parabolic equation.
Citation: Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113
References:
[1]

P. Bergeret, Classification of smooth solutions to $2\times 2$ hyperbolic systems with boundary damping, Math. Methods Appl. Sci., 20 (1997), 1563-1598. doi: 10.1002/(SICI)1099-1476(199712)20:18<1563::AID-MMA925>3.0.CO;2-9.

[2]

M. E. Bradley and S. Lenhart, Bilinear spatial control of the velocity term in a Kirchhoff plate equation, Electronic J. Differential Equations, 2001 (2001), 1-15.

[3]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Analysis, 64 (2006), 92-108. doi: 10.1016/j.na.2005.06.010.

[4]

R. C. Charão, E. Bisognin, V. Bisognin and A. F. Pazoto, Asymptotic behavior for a dissipative plate equation in $\mathbb{R}^{N}$ with periodic coefficients, Electronic J. Differential Equations, 2008 (2008), 23.

[5]

C. R. da Luz and R. C. Charão, Asymptotic properties for a semi-linear plate equation in unbounded domains, J. Hyperbolic Differential Equations, 6 (2009), 269-294. doi: 10.1142/S0219891609001824.

[6]

Darmawijoyo and W. T. van Horssen, On boundary damping for a weakly nonlinear wave equation, Nonlinear Dynamics, 30 (2002), 179-191. doi: 10.1023/A:1020473930223.

[7]

R. Denk, R. Racke and Y. Shibata, $L^p$ theory for the linear thermoelastic plate equations in bounded and exterior domains, Adv. Differential Equations, 14 (2009), 685-715.

[8]

W. Desch, K. B. Hannsgen and R. L. Wheeler, Passive boundary damping of viscoelastic structures, J. Integral Equations Appl., 8 (1996), 125-171. doi: 10.1216/jiea/1181075934.

[9]

G. G. Doronin, N. A. Lar'kin and A. J. Souza, A hyperbolic problem with nonlinear second-order boundary damping, Electron J. Differential Equations, 1998 (1998), 1-10.

[10]

A. D. Drozdov and V. B. Kolmanovskii, "Stability in Viscoelasticity," North-Holland Series in Applied Mathematics and Mechanics, 38, North-Holland Publishing Co., Amsterdam, 1994.

[11]

Y. Enomoto, On a thermoelastic plate equation in an exterior domain, Math. Meth. Appl. Sci., 25 (2002), 443-472. doi: 10.1002/mma.290.

[12]

M. Fabrizio and B. Lazzari, On the existence and the asymptotic stability of solutions for linear viscoelastic solids, Arch. Rational Mech. Anal., 116 (1991), 139-152. doi: 10.1007/BF00375589.

[13]

T. Hosono and K. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Meth. Appl. Sci., 16 (2006), 1839-1859. doi: 10.1142/S021820250600173X.

[14]

K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Meth. Appl. Sci., 18 (2008), 1001-1025. doi: 10.1142/S0218202508002930.

[15]

I. Lasiecka, S. Maad and A. Sasane, Existence and exponential decay of solutions to a quasilinear thermoelastic plate system, Nonlinear Differ. Equ. Appl., 15 (2008), 689-715.

[16]

I. Lasiecka and J. Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 2069-2107. doi: 10.1080/03605309908821495.

[17]

H. J. Lee, Uniform decay for solution of the plate equation with a boundary condition of memory type, Trends in Math., 9 (2006), 51-55.

[18]

W. Liu, Local boundary controllability for the semi-linear plate equation, Comm. Partial Differential Equations, 23 (1998), 201-221.

[19]

Y. Liu and W. Wang, The point-wise estimates of solutions for dissipative wave equation in multi-dimensions, Discrete Continuous Dynam. Systems - A, 20 (2008), 1013-1028.

[20]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermo-viscoelasticity, Quart. Appl. Math., 54 (1996), 21-31.

[21]

Z. Liu and S. Zheng, "Semi-Groups Associated With Dissipative Systems," Chapman & Hall/CRC Research Notes in Mathematics, 398, Boca Raton, FL, 1999.

[22]

J. R. Luyo Sánchez, "O Sistema Dinámico de von Kármán en DomÍNios NÁO Limitados é Globalmente bem Posto no Sentido de Hadamard: Análise do seu Limite Singular," Ph.D Thesis, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2003.

[23]

A. Matsumura, On the asymptotic behavior of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12 (1976), 169-189. doi: 10.2977/prims/1195190962.

[24]

J. E. Muñoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704. doi: 10.1016/S0022-247X(03)00511-0.

[25]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Continuous Dynam. Systems, 9 (2003), 1625-1639.

[26]

J. E. Muñoz Rivera, Asymptotic behavior in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.

[27]

K. Nishihara, $L^p-L^q$ estimates of solutions to the damped wave equation in $3$-dimensional space and their applications, Math. Z., 244 (2003), 631-649.

[28]

J. Y. Park, Bilinear boundary optimal control of the velocity terms in a Kirchhoff plate equation, Trends in Math., 9 (2006), 41-44.

[29]

A. F. Pazoto, J. C. Vila Bravo and J. E. Muñoz Rivera, Asymptotic stability of semi-groups associated to linear weak dissipative systems, Math. Comput. Modeling, 40 (2004), 387-392. doi: 10.1016/j.mcm.2003.10.048.

[30]

G. P. Menzala and E. Zuazua, Timoshenko's plate equations as a singular limit of the dynamical von Kármán system, J. Math. Pures Appl., 79 (2000), 73-94. doi: 10.1016/S0021-7824(00)00149-5.

[31]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate equation, J. Hyperbolic Differential Equations, accepted.

[32]

R. Teman, "Navier-Stokes Equations," Studies in Mathematics and Its Applications, Vol. 2, Revised Edition, North-Holland, Amsterdam, New York, Oxford, 1979.

[33]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2000), 464-489. doi: 10.1006/jdeq.2000.3933.

[34]

G. Todorova and B. Yordanov, The energy decay problem for wave equations with nonlinear dissipative terms in $\mathbb{R}^{n}$, Indiana University Mathematics Journal, 56 (2007), 389-416. doi: 10.1512/iumj.2007.56.2963.

[35]

M. A. Zarubinskaya and W. T. van Horssen, On aspects of boundary damping for a rectangular plate, Journal of Sound and Vibration, 292 (2006), 844-853. doi: 10.1016/j.jsv.2005.09.008.

[36]

M. A. Zarubinskaya and W. T. van Horssen, On aspects of asymptotic for plate equations, Nonlinear Dynamics, 41 (2005), 403-413. doi: 10.1007/s11071-005-1396-0.

[37]

X. Zhang and E. Zuazua, On the optimality of the observability inequalities for Kirchhoff plate systems with potentials in unbounded domains, in "Hyperbolic Problems: Theory, Numerics and Applications," Springer, (2008), 233-243. doi: 10.1007/978-3-540-75712-2_19.

show all references

References:
[1]

P. Bergeret, Classification of smooth solutions to $2\times 2$ hyperbolic systems with boundary damping, Math. Methods Appl. Sci., 20 (1997), 1563-1598. doi: 10.1002/(SICI)1099-1476(199712)20:18<1563::AID-MMA925>3.0.CO;2-9.

[2]

M. E. Bradley and S. Lenhart, Bilinear spatial control of the velocity term in a Kirchhoff plate equation, Electronic J. Differential Equations, 2001 (2001), 1-15.

[3]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Analysis, 64 (2006), 92-108. doi: 10.1016/j.na.2005.06.010.

[4]

R. C. Charão, E. Bisognin, V. Bisognin and A. F. Pazoto, Asymptotic behavior for a dissipative plate equation in $\mathbb{R}^{N}$ with periodic coefficients, Electronic J. Differential Equations, 2008 (2008), 23.

[5]

C. R. da Luz and R. C. Charão, Asymptotic properties for a semi-linear plate equation in unbounded domains, J. Hyperbolic Differential Equations, 6 (2009), 269-294. doi: 10.1142/S0219891609001824.

[6]

Darmawijoyo and W. T. van Horssen, On boundary damping for a weakly nonlinear wave equation, Nonlinear Dynamics, 30 (2002), 179-191. doi: 10.1023/A:1020473930223.

[7]

R. Denk, R. Racke and Y. Shibata, $L^p$ theory for the linear thermoelastic plate equations in bounded and exterior domains, Adv. Differential Equations, 14 (2009), 685-715.

[8]

W. Desch, K. B. Hannsgen and R. L. Wheeler, Passive boundary damping of viscoelastic structures, J. Integral Equations Appl., 8 (1996), 125-171. doi: 10.1216/jiea/1181075934.

[9]

G. G. Doronin, N. A. Lar'kin and A. J. Souza, A hyperbolic problem with nonlinear second-order boundary damping, Electron J. Differential Equations, 1998 (1998), 1-10.

[10]

A. D. Drozdov and V. B. Kolmanovskii, "Stability in Viscoelasticity," North-Holland Series in Applied Mathematics and Mechanics, 38, North-Holland Publishing Co., Amsterdam, 1994.

[11]

Y. Enomoto, On a thermoelastic plate equation in an exterior domain, Math. Meth. Appl. Sci., 25 (2002), 443-472. doi: 10.1002/mma.290.

[12]

M. Fabrizio and B. Lazzari, On the existence and the asymptotic stability of solutions for linear viscoelastic solids, Arch. Rational Mech. Anal., 116 (1991), 139-152. doi: 10.1007/BF00375589.

[13]

T. Hosono and K. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Meth. Appl. Sci., 16 (2006), 1839-1859. doi: 10.1142/S021820250600173X.

[14]

K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Meth. Appl. Sci., 18 (2008), 1001-1025. doi: 10.1142/S0218202508002930.

[15]

I. Lasiecka, S. Maad and A. Sasane, Existence and exponential decay of solutions to a quasilinear thermoelastic plate system, Nonlinear Differ. Equ. Appl., 15 (2008), 689-715.

[16]

I. Lasiecka and J. Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 2069-2107. doi: 10.1080/03605309908821495.

[17]

H. J. Lee, Uniform decay for solution of the plate equation with a boundary condition of memory type, Trends in Math., 9 (2006), 51-55.

[18]

W. Liu, Local boundary controllability for the semi-linear plate equation, Comm. Partial Differential Equations, 23 (1998), 201-221.

[19]

Y. Liu and W. Wang, The point-wise estimates of solutions for dissipative wave equation in multi-dimensions, Discrete Continuous Dynam. Systems - A, 20 (2008), 1013-1028.

[20]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermo-viscoelasticity, Quart. Appl. Math., 54 (1996), 21-31.

[21]

Z. Liu and S. Zheng, "Semi-Groups Associated With Dissipative Systems," Chapman & Hall/CRC Research Notes in Mathematics, 398, Boca Raton, FL, 1999.

[22]

J. R. Luyo Sánchez, "O Sistema Dinámico de von Kármán en DomÍNios NÁO Limitados é Globalmente bem Posto no Sentido de Hadamard: Análise do seu Limite Singular," Ph.D Thesis, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2003.

[23]

A. Matsumura, On the asymptotic behavior of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12 (1976), 169-189. doi: 10.2977/prims/1195190962.

[24]

J. E. Muñoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704. doi: 10.1016/S0022-247X(03)00511-0.

[25]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Continuous Dynam. Systems, 9 (2003), 1625-1639.

[26]

J. E. Muñoz Rivera, Asymptotic behavior in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.

[27]

K. Nishihara, $L^p-L^q$ estimates of solutions to the damped wave equation in $3$-dimensional space and their applications, Math. Z., 244 (2003), 631-649.

[28]

J. Y. Park, Bilinear boundary optimal control of the velocity terms in a Kirchhoff plate equation, Trends in Math., 9 (2006), 41-44.

[29]

A. F. Pazoto, J. C. Vila Bravo and J. E. Muñoz Rivera, Asymptotic stability of semi-groups associated to linear weak dissipative systems, Math. Comput. Modeling, 40 (2004), 387-392. doi: 10.1016/j.mcm.2003.10.048.

[30]

G. P. Menzala and E. Zuazua, Timoshenko's plate equations as a singular limit of the dynamical von Kármán system, J. Math. Pures Appl., 79 (2000), 73-94. doi: 10.1016/S0021-7824(00)00149-5.

[31]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate equation, J. Hyperbolic Differential Equations, accepted.

[32]

R. Teman, "Navier-Stokes Equations," Studies in Mathematics and Its Applications, Vol. 2, Revised Edition, North-Holland, Amsterdam, New York, Oxford, 1979.

[33]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2000), 464-489. doi: 10.1006/jdeq.2000.3933.

[34]

G. Todorova and B. Yordanov, The energy decay problem for wave equations with nonlinear dissipative terms in $\mathbb{R}^{n}$, Indiana University Mathematics Journal, 56 (2007), 389-416. doi: 10.1512/iumj.2007.56.2963.

[35]

M. A. Zarubinskaya and W. T. van Horssen, On aspects of boundary damping for a rectangular plate, Journal of Sound and Vibration, 292 (2006), 844-853. doi: 10.1016/j.jsv.2005.09.008.

[36]

M. A. Zarubinskaya and W. T. van Horssen, On aspects of asymptotic for plate equations, Nonlinear Dynamics, 41 (2005), 403-413. doi: 10.1007/s11071-005-1396-0.

[37]

X. Zhang and E. Zuazua, On the optimality of the observability inequalities for Kirchhoff plate systems with potentials in unbounded domains, in "Hyperbolic Problems: Theory, Numerics and Applications," Springer, (2008), 233-243. doi: 10.1007/978-3-540-75712-2_19.

[1]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[2]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[3]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[4]

Ruy Coimbra Charão, Alessandra Piske, Ryo Ikehata. A dissipative logarithmic-Laplacian type of plate equation: Asymptotic profile and decay rates. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2215-2255. doi: 10.3934/dcds.2021189

[5]

Xueqin Peng, Gao Jia. Existence and asymptotical behavior of positive solutions for the Schrödinger-Poisson system with double quasi-linear terms. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2325-2344. doi: 10.3934/dcdsb.2021134

[6]

Thinh Tien Nguyen. Asymptotic limit and decay estimates for a class of dissipative linear hyperbolic systems in several dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1651-1684. doi: 10.3934/dcds.2019073

[7]

Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029

[8]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[9]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[10]

Bassam Kojok. Global existence for a forced dispersive dissipative equation via the I-method. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1401-1419. doi: 10.3934/cpaa.2009.8.1401

[11]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[12]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure and Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[13]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[14]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[15]

Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197

[16]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[17]

Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014

[18]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[19]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[20]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (90)
  • HTML views (0)
  • Cited by (29)

Other articles
by authors

[Back to Top]