July  2011, 29(3): 1155-1174. doi: 10.3934/dcds.2011.29.1155

Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics

1. 

Instituto de Matemática, UFRGS, 91509-900, Porto Alegre, Brazil

2. 

Departamento de Matemática, PUC, 22453-900, Rio de Janeiro, RJ, Brazil

Received  February 2010 Revised  June 2010 Published  November 2010

We obtain a large deviation function for the stationary measures of twisted Brownian motions associated to the Lagrangians $L_{\lambda}(p,v)=\frac{1}{2}g_{p}(v,v)- \lambda\omega_{p}(v)$, where $g$ is a $C^{\infty}$ Riemannian metric in a compact surface $(M,g)$ with nonpositive curvature, $\omega$ is a closed 1-form such that the Aubry-Mather measure of the Lagrangian $L(p,v)=\frac{1}{2}g_{p}(v,v)-\omega_{p}(v)$ has support in a unique closed geodesic $\gamma$; and the curvature is negative at every point of $M$ but at the points of $\gamma$ where it is zero. We also assume that the Aubry set is equal to the Mather set. The large deviation function is of polynomial type, the power of the polynomial function depends on the way the curvature goes to zero in a neighborhood of $\gamma$. This results has interesting counterparts in one-dimensional dynamics with indifferent fixed points and convex billiards with flat points in the boundary of the billiard. A previous estimate by N. Anantharaman of the large deviation function in terms of the Peierl's barrier of the Aubry-Mather measure is crucial for our result.
Citation: Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155
References:
[1]

N. Anantharaman, On the zero-temperature or vanishing viscosity limit for certain Markov processes arising from Lagrangian dynamics, J. Eur. Math. Soc., 6 (2004), 207-276. doi: 10.4171/JEMS/9.

[2]

N. Anantharaman, Counting geodesics which are optimal in homology, Erg. Theo. and Dyn. Syst., 23 (2003), 353-388. doi: 10.1017/S0143385702001372.

[3]

N. Anantharaman, Entropie et localisation des fonctions propres, ENS-Lyon, (2006), http://www.math.polytechnique.fr/ nalini/HDR.pdf.

[4]

N. Anantharaman, R. Iturriaga, P. Padilla and H. Sánchez-Morgado, Physical solutions of the Hamilton-Jacobi equation, Disc. Contin. Dyn. Syst. Ser. B, 5 (2005), 513-528. doi: 10.3934/dcdsb.2005.5.513.

[5]

W. Ballman, M. Gromov and V. Schroeder, "Manifolds of Non-positive Curvature," Birkhausser, 1985.

[6]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.

[7]

H. Busemann, "The Geometry of Geodesics," Academic Press, 1955.

[8]

M. J. D. Carneiro, On minimizing measures of the action of autonomous Lagrangians, Nonlinearity, 8 (1995), 1077-1085 doi: 10.1088/0951-7715/8/6/011.

[9]

J. Cheeger and D. G. Ebin, "Comparison Theorems in Riemannian Geometry," North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American-Elsevier Publishing Co., Inc., New York, 1975.

[10]

G. Contreras, Action potential and weak KAM solutions, Calc. Var. Partial Differential Equations, 13 (2001), 427-458.

[11]

G. Contreras and R. Ruggiero, Non-hyperbolic surfaces having all ideal triangles of finite area, Bul. Braz. Math. Soc., 28 (1997), 43-71. doi: 10.1007/BF01235988.

[12]

G. Contreras and R. Iturriaga, Global minimizers of autonomous lagrangians, to appear, (2004).

[13]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal., 8 (1998), 788-809. doi: 10.1007/s000390050074.

[14]

A. Dembo and O. Zeitouni, "Large Deviations Techniques and Applications," Springer Verlag, 1998.

[15]

P. Eberlein, Manifolds of nonpositive curvature, in "Global Differential Geometry," MAA Stud. Math., 27, Math. Assoc. America, Washington DC, (1989), 223-258.

[16]

R. Durrett, "Stochastic Calculus: A practical Introduction," CRC-Press, 1996.

[17]

L. C. Evans, Towards a quantum analog of weak KAM theory, Commun. in Math. Phys., 244 (2004), 311-334. doi: 10.1007/s00220-003-0975-5.

[18]

A. Fathi, Weak KAM theorem and lagrangian dynamics, to appear, 2004.

[19]

A. Fathi, Solutions KAM faibles conjuguees et barrieres de Peierls, C. R. Acad. Sci. Paris Ser. I, 235 (1997), 649-652.

[20]

A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388. doi: 10.1007/s00222-003-0323-6.

[21]

M. Gerber and V. Nitica, Holder exponents of horocycle foliations on surfaces, Ergodic Theory Dynam. Systems, 19 (1999), 1247-1254. doi: 10.1017/S0143385799146832.

[22]

D. A. Gomes and E. Valdinoci, Entropy penalization methods for Hamilton-Jacobi equations, Adv. Math., 215 (2007), 94-152. doi: 10.1016/j.aim.2007.04.001.

[23]

D. A. Gomes, A. O. Lopes and J. Mohr, The Mather measure and a large deviation principle for the entropy penalized method,, to appear in Communications in Contemporary Mathematics., (). 

[24]

D. A. Gomes, A. O. Lopes and J. Mohr, Wigner measures and the semi-classical limit to the Aubry-Mather measure, to appear, 2009.

[25]

A. O. Lopes, V. Rosas and R. Ruggiero, Cohomology and Subcohomology for expansive geodesic flows, Discrete and Continous Dynamical Systems, 17 (2007), 403-422.

[26]

R. Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9 (1996), 273-310. doi: 10.1088/0951-7715/9/2/002.

[27]

R. Markarian, Billiards with polynomial decay of correlations, Ergodic Theory Dynam. Systems, 24 (2004), 177-197 doi: 10.1017/S0143385703000270.

[28]

D. Massart, Aubry sets vs Mather sets in two degrees of freedom, to appear, 2008.

[29]

J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 2 (1991), 169-207. doi: 10.1007/BF02571383.

[30]

S. Nonnenmacher, Some open questions in wave chaos, Nonlinearity, 21 (2008), T113-T121. doi: 10.1088/0951-7715/21/8/T01.

[31]

R. Ruggiero., Expansive geodesic flows in manifolds with no conjugate points, Ergodic Theory Dynam. Systems, 17 (1997), 211-225. doi: 10.1017/S0143385797060963.

[32]

R. Ruggiero, Expansive dynamics and hyperbolic geometry, Bul. Braz. Math. Soc., 25 (1994), 139-172. doi: 10.1007/BF01321305.

[33]

O. M. Sarig., Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653. doi: 10.1007/s00222-002-0248-5.

[34]

D. Stroock, "Partial Differential Equations for Probabilists," Cambridge Press, 2008. doi: 10.1017/CBO9780511755255.

[35]

L. S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188. doi: 10.1007/BF02808180.

show all references

References:
[1]

N. Anantharaman, On the zero-temperature or vanishing viscosity limit for certain Markov processes arising from Lagrangian dynamics, J. Eur. Math. Soc., 6 (2004), 207-276. doi: 10.4171/JEMS/9.

[2]

N. Anantharaman, Counting geodesics which are optimal in homology, Erg. Theo. and Dyn. Syst., 23 (2003), 353-388. doi: 10.1017/S0143385702001372.

[3]

N. Anantharaman, Entropie et localisation des fonctions propres, ENS-Lyon, (2006), http://www.math.polytechnique.fr/ nalini/HDR.pdf.

[4]

N. Anantharaman, R. Iturriaga, P. Padilla and H. Sánchez-Morgado, Physical solutions of the Hamilton-Jacobi equation, Disc. Contin. Dyn. Syst. Ser. B, 5 (2005), 513-528. doi: 10.3934/dcdsb.2005.5.513.

[5]

W. Ballman, M. Gromov and V. Schroeder, "Manifolds of Non-positive Curvature," Birkhausser, 1985.

[6]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.

[7]

H. Busemann, "The Geometry of Geodesics," Academic Press, 1955.

[8]

M. J. D. Carneiro, On minimizing measures of the action of autonomous Lagrangians, Nonlinearity, 8 (1995), 1077-1085 doi: 10.1088/0951-7715/8/6/011.

[9]

J. Cheeger and D. G. Ebin, "Comparison Theorems in Riemannian Geometry," North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American-Elsevier Publishing Co., Inc., New York, 1975.

[10]

G. Contreras, Action potential and weak KAM solutions, Calc. Var. Partial Differential Equations, 13 (2001), 427-458.

[11]

G. Contreras and R. Ruggiero, Non-hyperbolic surfaces having all ideal triangles of finite area, Bul. Braz. Math. Soc., 28 (1997), 43-71. doi: 10.1007/BF01235988.

[12]

G. Contreras and R. Iturriaga, Global minimizers of autonomous lagrangians, to appear, (2004).

[13]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal., 8 (1998), 788-809. doi: 10.1007/s000390050074.

[14]

A. Dembo and O. Zeitouni, "Large Deviations Techniques and Applications," Springer Verlag, 1998.

[15]

P. Eberlein, Manifolds of nonpositive curvature, in "Global Differential Geometry," MAA Stud. Math., 27, Math. Assoc. America, Washington DC, (1989), 223-258.

[16]

R. Durrett, "Stochastic Calculus: A practical Introduction," CRC-Press, 1996.

[17]

L. C. Evans, Towards a quantum analog of weak KAM theory, Commun. in Math. Phys., 244 (2004), 311-334. doi: 10.1007/s00220-003-0975-5.

[18]

A. Fathi, Weak KAM theorem and lagrangian dynamics, to appear, 2004.

[19]

A. Fathi, Solutions KAM faibles conjuguees et barrieres de Peierls, C. R. Acad. Sci. Paris Ser. I, 235 (1997), 649-652.

[20]

A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388. doi: 10.1007/s00222-003-0323-6.

[21]

M. Gerber and V. Nitica, Holder exponents of horocycle foliations on surfaces, Ergodic Theory Dynam. Systems, 19 (1999), 1247-1254. doi: 10.1017/S0143385799146832.

[22]

D. A. Gomes and E. Valdinoci, Entropy penalization methods for Hamilton-Jacobi equations, Adv. Math., 215 (2007), 94-152. doi: 10.1016/j.aim.2007.04.001.

[23]

D. A. Gomes, A. O. Lopes and J. Mohr, The Mather measure and a large deviation principle for the entropy penalized method,, to appear in Communications in Contemporary Mathematics., (). 

[24]

D. A. Gomes, A. O. Lopes and J. Mohr, Wigner measures and the semi-classical limit to the Aubry-Mather measure, to appear, 2009.

[25]

A. O. Lopes, V. Rosas and R. Ruggiero, Cohomology and Subcohomology for expansive geodesic flows, Discrete and Continous Dynamical Systems, 17 (2007), 403-422.

[26]

R. Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9 (1996), 273-310. doi: 10.1088/0951-7715/9/2/002.

[27]

R. Markarian, Billiards with polynomial decay of correlations, Ergodic Theory Dynam. Systems, 24 (2004), 177-197 doi: 10.1017/S0143385703000270.

[28]

D. Massart, Aubry sets vs Mather sets in two degrees of freedom, to appear, 2008.

[29]

J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 2 (1991), 169-207. doi: 10.1007/BF02571383.

[30]

S. Nonnenmacher, Some open questions in wave chaos, Nonlinearity, 21 (2008), T113-T121. doi: 10.1088/0951-7715/21/8/T01.

[31]

R. Ruggiero., Expansive geodesic flows in manifolds with no conjugate points, Ergodic Theory Dynam. Systems, 17 (1997), 211-225. doi: 10.1017/S0143385797060963.

[32]

R. Ruggiero, Expansive dynamics and hyperbolic geometry, Bul. Braz. Math. Soc., 25 (1994), 139-172. doi: 10.1007/BF01321305.

[33]

O. M. Sarig., Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653. doi: 10.1007/s00222-002-0248-5.

[34]

D. Stroock, "Partial Differential Equations for Probabilists," Cambridge Press, 2008. doi: 10.1017/CBO9780511755255.

[35]

L. S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188. doi: 10.1007/BF02808180.

[1]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

[2]

Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135

[3]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[4]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[5]

Bassam Fayad. Discrete and continuous spectra on laminations over Aubry-Mather sets. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 823-834. doi: 10.3934/dcds.2008.21.823

[6]

Diogo A. Gomes. Viscosity solution methods and the discrete Aubry-Mather problem. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 103-116. doi: 10.3934/dcds.2005.13.103

[7]

Siniša Slijepčević. The Aubry-Mather theorem for driven generalized elastic chains. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2983-3011. doi: 10.3934/dcds.2014.34.2983

[8]

Kaizhi Wang, Lin Wang, Jun Yan. Aubry-Mather theory for contact Hamiltonian systems II. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 555-595. doi: 10.3934/dcds.2021128

[9]

Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158

[10]

Monia Karouf. Reflected solutions of backward doubly SDEs driven by Brownian motion and Poisson random measure. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5571-5601. doi: 10.3934/dcds.2019245

[11]

Francesca Biagini, Thilo Meyer-Brandis, Bernt Øksendal, Krzysztof Paczka. Optimal control with delayed information flow of systems driven by G-Brownian motion. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 8-. doi: 10.1186/s41546-018-0033-z

[12]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[13]

Michael Usher. Floer homology in disk bundles and symplectically twisted geodesic flows. Journal of Modern Dynamics, 2009, 3 (1) : 61-101. doi: 10.3934/jmd.2009.3.61

[14]

Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic and Related Models, 2018, 11 (1) : 1-23. doi: 10.3934/krm.2018001

[15]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[16]

Elena Kosygina. Brownian flow on a finite interval with jump boundary conditions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 867-880. doi: 10.3934/dcdsb.2006.6.867

[17]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[18]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[19]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial and Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

[20]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]