Citation: |
[1] |
F. Abdenur, C. Bonatti, S. Crovisier and L. J. Diaz, Generic diffeomorphisms on compact surfaces, Fund. Math., 187 (2005), 127-159.doi: 10.4064/fm187-2-3. |
[2] |
C. Bonatti, L. J. Díaz and E. R. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2), 158 (2003), 355-418.doi: 10.4007/annals.2003.158.355. |
[3] |
F. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., 158 (1971), 301-308.doi: 10.1090/S0002-9947-1971-0283812-3. |
[4] |
S. Gan, A necessary and sufficient condition for the existence of dominated splitting with a given index, Trends Math., 7 (2004), 143-168. |
[5] |
R. Mañé, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540.doi: 10.2307/2007021. |
[6] |
C. Morales, Another dichotomy for surface diffeomorphisms, Proc. Amer. Math. Soc., 137 (2009), 2639-2644.doi: 10.1090/S0002-9939-09-09879-7. |
[7] |
S. Newhouse, Lectures on dynamical systems, in "Dynamical Systems," Progress in Mathematics (CIME Lectures 1978), Birkhäuser, Boston, (1978), 1-114. |
[8] |
E. R. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2), 151 (2000), 961-1023.doi: 10.2307/121127. |
[9] |
L. Wen, Homoclinic tangencies and dominated splittings, Nonlinearity, 15 (2002), 1445-1469.doi: 10.1088/0951-7715/15/5/306. |