\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On spiral periodic points and saddles for surface diffeomorphisms

Abstract Related Papers Cited by
  • We prove that a $C^1$ generic orientation-preserving diffeomorphism of a closed orientable surface either is Axiom A without cycles or the closures of the sets of saddles and of periodic points without real eigenvalues have nonempty intersection.
    Mathematics Subject Classification: Primary: 37D30; Secondary: 37D45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Abdenur, C. Bonatti, S. Crovisier and L. J. Diaz, Generic diffeomorphisms on compact surfaces, Fund. Math., 187 (2005), 127-159.doi: 10.4064/fm187-2-3.

    [2]

    C. Bonatti, L. J. Díaz and E. R. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2), 158 (2003), 355-418.doi: 10.4007/annals.2003.158.355.

    [3]

    F. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., 158 (1971), 301-308.doi: 10.1090/S0002-9947-1971-0283812-3.

    [4]

    S. Gan, A necessary and sufficient condition for the existence of dominated splitting with a given index, Trends Math., 7 (2004), 143-168.

    [5]

    R. Mañé, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540.doi: 10.2307/2007021.

    [6]

    C. Morales, Another dichotomy for surface diffeomorphisms, Proc. Amer. Math. Soc., 137 (2009), 2639-2644.doi: 10.1090/S0002-9939-09-09879-7.

    [7]

    S. Newhouse, Lectures on dynamical systems, in "Dynamical Systems," Progress in Mathematics (CIME Lectures 1978), Birkhäuser, Boston, (1978), 1-114.

    [8]

    E. R. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2), 151 (2000), 961-1023.doi: 10.2307/121127.

    [9]

    L. Wen, Homoclinic tangencies and dominated splittings, Nonlinearity, 15 (2002), 1445-1469.doi: 10.1088/0951-7715/15/5/306.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return