July  2011, 29(3): 1191-1195. doi: 10.3934/dcds.2011.29.1191

On spiral periodic points and saddles for surface diffeomorphisms

1. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970, Rio de Janeiro

Received  February 2010 Revised  June 2010 Published  November 2010

We prove that a $C^1$ generic orientation-preserving diffeomorphism of a closed orientable surface either is Axiom A without cycles or the closures of the sets of saddles and of periodic points without real eigenvalues have nonempty intersection.
Citation: C. Morales. On spiral periodic points and saddles for surface diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1191-1195. doi: 10.3934/dcds.2011.29.1191
References:
[1]

F. Abdenur, C. Bonatti, S. Crovisier and L. J. Diaz, Generic diffeomorphisms on compact surfaces,, Fund. Math., 187 (2005), 127.  doi: 10.4064/fm187-2-3.  Google Scholar

[2]

C. Bonatti, L. J. Díaz and E. R. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math. (2), 158 (2003), 355.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[3]

F. Franks, Necessary conditions for stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301.  doi: 10.1090/S0002-9947-1971-0283812-3.  Google Scholar

[4]

S. Gan, A necessary and sufficient condition for the existence of dominated splitting with a given index,, Trends Math., 7 (2004), 143.   Google Scholar

[5]

R. Mañé, An ergodic closing lemma,, Ann. of Math. (2), 116 (1982), 503.  doi: 10.2307/2007021.  Google Scholar

[6]

C. Morales, Another dichotomy for surface diffeomorphisms,, Proc. Amer. Math. Soc., 137 (2009), 2639.  doi: 10.1090/S0002-9939-09-09879-7.  Google Scholar

[7]

S. Newhouse, Lectures on dynamical systems,, in, (1978), 1.   Google Scholar

[8]

E. R. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms,, Ann. of Math. (2), 151 (2000), 961.  doi: 10.2307/121127.  Google Scholar

[9]

L. Wen, Homoclinic tangencies and dominated splittings,, Nonlinearity, 15 (2002), 1445.  doi: 10.1088/0951-7715/15/5/306.  Google Scholar

show all references

References:
[1]

F. Abdenur, C. Bonatti, S. Crovisier and L. J. Diaz, Generic diffeomorphisms on compact surfaces,, Fund. Math., 187 (2005), 127.  doi: 10.4064/fm187-2-3.  Google Scholar

[2]

C. Bonatti, L. J. Díaz and E. R. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math. (2), 158 (2003), 355.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[3]

F. Franks, Necessary conditions for stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301.  doi: 10.1090/S0002-9947-1971-0283812-3.  Google Scholar

[4]

S. Gan, A necessary and sufficient condition for the existence of dominated splitting with a given index,, Trends Math., 7 (2004), 143.   Google Scholar

[5]

R. Mañé, An ergodic closing lemma,, Ann. of Math. (2), 116 (1982), 503.  doi: 10.2307/2007021.  Google Scholar

[6]

C. Morales, Another dichotomy for surface diffeomorphisms,, Proc. Amer. Math. Soc., 137 (2009), 2639.  doi: 10.1090/S0002-9939-09-09879-7.  Google Scholar

[7]

S. Newhouse, Lectures on dynamical systems,, in, (1978), 1.   Google Scholar

[8]

E. R. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms,, Ann. of Math. (2), 151 (2000), 961.  doi: 10.2307/121127.  Google Scholar

[9]

L. Wen, Homoclinic tangencies and dominated splittings,, Nonlinearity, 15 (2002), 1445.  doi: 10.1088/0951-7715/15/5/306.  Google Scholar

[1]

Christian Bonatti, Stanislav Minkov, Alexey Okunev, Ivan Shilin. Anosov diffeomorphism with a horseshoe that attracts almost any point. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 441-465. doi: 10.3934/dcds.2020017

[2]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[3]

Xiao-Fei Peng, Wen Li. A new Bramble-Pasciak-like preconditioner for saddle point problems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 823-838. doi: 10.3934/naco.2012.2.823

[4]

Alexandre A. P. Rodrigues. Moduli for heteroclinic connections involving saddle-foci and periodic solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3155-3182. doi: 10.3934/dcds.2015.35.3155

[5]

Francesca Alessio, Piero Montecchiari, Andrea Sfecci. Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks & Heterogeneous Media, 2019, 14 (3) : 567-587. doi: 10.3934/nhm.2019022

[6]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[7]

Monica Lazzo, Paul G. Schmidt. Monotone local semiflows with saddle-point dynamics and applications to semilinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 566-575. doi: 10.3934/proc.2005.2005.566

[8]

Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181

[9]

André Fischer, Jürgen Saal. On instability of the Ekman spiral. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1225-1236. doi: 10.3934/dcdss.2013.6.1225

[10]

Jamie Cruz, Miguel Gutiérrez. Spiral motion in classical mechanics. Conference Publications, 2009, 2009 (Special) : 191-197. doi: 10.3934/proc.2009.2009.191

[11]

Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719

[12]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[13]

Enoch H. Apaza, Regis Soares. Axiom a systems without sinks and sources on $n$-manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 393-401. doi: 10.3934/dcds.2008.21.393

[14]

Jean-René Chazottes, Renaud Leplaideur. Fluctuations of the nth return time for Axiom A diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 399-411. doi: 10.3934/dcds.2005.13.399

[15]

Luchezar Stoyanov. Pinching conditions, linearization and regularity of Axiom A flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 391-412. doi: 10.3934/dcds.2013.33.391

[16]

Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1

[17]

Cheng Cheng, Shaobo Gan, Yi Shi. A robustly transitive diffeomorphism of Kan's type. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 867-888. doi: 10.3934/dcds.2018037

[18]

Christian Bonatti, Sylvain Crovisier and Amie Wilkinson. The centralizer of a $C^1$-generic diffeomorphism is trivial. Electronic Research Announcements, 2008, 15: 33-43. doi: 10.3934/era.2008.15.33

[19]

Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2593-2619. doi: 10.3934/dcds.2013.33.2593

[20]

Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]