\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regular level sets of Lyapunov graphs of nonsingular Smale flows on 3-manifolds

Abstract Related Papers Cited by
  • In this paper, we first discuss the regular level set of a nonsingular Smale flow (NSF) on a 3-manifold. The main result about this topic is that a 3-manifold $M$ admits an NSF which has a regular level set homeomorphic to $(n+1)T^{2}$ $(n\in \mathbb{Z}, n\geq 0)$ if and only if $M=M'$#$n S^{1}\times S^{2}$. Then we discuss how to realize a template as a basic set of an NSF on a 3-manifold. We focus on the connection between the genus of the template $T$ and the topological structure of the realizing 3-manifold $M$.
    Mathematics Subject Classification: Primary: 37D15, 37D20, 37E99; Secondary: 57N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Béguin and C. Bonatti, Flots de Smale en dimension 3: Présentations finies de voisinages invariants d'ensembles selles, (French) [Smale flows in dimension 3: Finite presentations of invariant neighborhoods of saddle sets], Topology, 41 (2002), 119-162.doi: 10.1016/S0040-9383(00)00032-X.

    [2]

    R. Bowen, One-dimensional hyperbolic sets for flows, J. Differential Equations, 12 (1972), 173-179.doi: 10.1016/0022-0396(72)90012-5.

    [3]

    J. Birman and R. F. Williams, Knotted periodic orbits in dynamical systems. I. Lorenz's equations, Topology, 22 (1983), 47-82.doi: 10.1016/0040-9383(83)90045-9.

    [4]

    J. Birman and R. F. Williams, Knotted periodic orbits in dynamical system. II. Knot holders for fibered knots, in "Low-Dimensional Topology" (San Francisco, Calif., 1981), Contemp. Math., 20, Amer. Math. Soc., Providence, RI, (1983), 1-60.

    [5]

    R. N. Cruz and K. A. de Rezende, Cycle rank of Lyapunov graphs and the genera of manifolds, Proc. Amer. Math. Soc, 126 (1998), 3715-3720.doi: 10.1090/S0002-9939-98-04957-0.

    [6]

    J. Franks, Nonsingular Smale flows on $S^{3}$, Topology, 24 (1985), 265-282.doi: 10.1016/0040-9383(85)90002-3.

    [7]

    J. Franks, Symbolic dynamics in flows on three-manifolds, Trans. Amer. Math. Soc, 279 (1983), 231-236.doi: 10.1090/S0002-9947-1983-0704612-1.

    [8]

    J. Franks, "Homology and Dynamical Systems," CBMS 49, American Mathematical Society, Providence, Rhode Island, 1982.

    [9]

    J. Franks, Knots, links and symbolic dynamics, Ann. of Math. (2), 113 (1981), 529-552.doi: 10.2307/2006996.

    [10]

    S. R. Fenley, Anosov flows in 3-manifolds, Ann. of Math. (2), 139 (1994), 79-115.doi: 10.2307/2946628.

    [11]

    G. Frank, Templates and train tracks, Trans. Amer. Math. Soc, 308 (1988), 765-784.doi: 10.1090/S0002-9947-1988-0951627-9.

    [12]

    R. W. Ghrist, P. J. Holmes and M. C. Sullivan, "Knots and Links in Three-dimensional Flows," Lecture Notes in Mathematics, 1654, Springer-Verlag, Berlin, 1997.

    [13]

    J. Morgan, Nonsingular Morse-Smale flows on 3-dimensional manifolds, Topology, 18 (1978), 41-54.doi: 10.1016/0040-9383(79)90013-2.

    [14]

    V. Meleshuk, "Embedding Templates in Flows," Ph.D thesis, Northwestern University, 2002.

    [15]

    N. Oka, Notes on Lyapunov graphs and nonsingular Smale flows on three manifolds, Nagoya Math. J, 117 (1990), 37-61.

    [16]

    C. Pugh and M. Shub, Suspending subshifts, in "Contributions to Analysis and Geometry" (eds. Md. Baltimore), Johns Hopkins Univ. Press, (1981), 265-275.

    [17]

    K. de Rezende, Smale flows on the three-sphere, Trans. Amer. Math. Soc, 303 (1987), 283-310.doi: 10.1090/S0002-9947-1987-0896023-7.

    [18]

    C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos," 2nd edition, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1999.

    [19]

    D. Rolfsen, "Knots and Links," Publish or Perish, Inc., Berkeley, CA, 1976.

    [20]

    M. Saito, On closed orbits of Morse-Smale flows on 3-manifolds, Bull. London Math. Soc, 23 (1991), 482-486.doi: 10.1112/blms/23.5.482.

    [21]

    M. C. Sullivan, Visually building Smale flows on $S^{3}$, Topology Appl, 106 (2000), 1-19.doi: 10.1016/S0166-8641(99)00069-3.

    [22]

    B. Yu, Lorenz like Smale flows on three-manifolds, Topology Appl, 156 (2009), 2462-2469.doi: 10.1016/j.topol.2009.07.008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return