July  2011, 29(3): 1291-1307. doi: 10.3934/dcds.2011.29.1291

Coupled-expanding maps under small perturbations

1. 

Department of Mathematics, Shandong University, Jinan, Shandong 250100, China, China

2. 

Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R.

Received  March 2010 Revised  August 2010 Published  November 2010

This paper studies the $C^1$-perturbation problem of strictly $A$-coupled-expanding maps in finite-dimensional Euclidean spaces, where $A$ is an irreducible transition matrix with one row-sum no less than $2$. It is proved that under certain conditions strictly $A$-coupled-expanding maps are chaotic in the sense of Li-Yorke or Devaney under small $C^1$-perturbations. It is shown that strictly $A$-coupled-expanding maps are $C^1$ structurally stable in their chaotic invariant sets under certain stronger conditions. One illustrative example is provided with computer simulations.
Citation: Xu Zhang, Yuming Shi, Guanrong Chen. Coupled-expanding maps under small perturbations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1291-1307. doi: 10.3934/dcds.2011.29.1291
References:
[1]

A. A. Andronov and C. E. Chaikin, "Theory of Oscillations" (translated and adapted by S. Lefschetz),, Princeton Univ. Press, (1949).   Google Scholar

[2]

A. Andronov and L. Pontrjagin, Systèmes grossiers,, Dokl. Akad. Nauk. SSSR, 14 (1937), 247.   Google Scholar

[3]

J. Awrejcewicz and M. M. Holicke, "Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods,", World Scientific Publishing Co. Pte. Ltd., (2007).  doi: 10.1142/9789812709103.  Google Scholar

[4]

J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos,, Amer. Math. Monthly, 99 (1992), 332.  doi: 10.2307/2324899.  Google Scholar

[5]

G. D. Birkhoff, "Dynamical Systems,", Amer. Math. Soc., (1927).   Google Scholar

[6]

L. Block and W. Coppel, "Dynamics in One Dimension, Lecture Notes in Math. Vol. 1513,", Springer-Verlag, (1992).   Google Scholar

[7]

L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one dimentional maps,, in, 819 (1980), 18.   Google Scholar

[8]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,", Addison-Wesley, (1989).   Google Scholar

[9]

M. Fečkan, "Topological Degree Approach to Bifurcation Problems,", Springer, (2008).  doi: 10.1007/978-1-4020-8724-0.  Google Scholar

[10]

S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$-stability and $\Omega$-stability conjectures for flows,, Ann. of Math., 145 (1997), 81.  doi: 10.2307/2951824.  Google Scholar

[11]

S. Hu, A proof of $C^1$ stability conjecture for three-dimensional flows,, Trans. Amer. Math. Soc., 342 (1994), 753.  doi: 10.2307/2154651.  Google Scholar

[12]

B. P. Kitchens, "Symbolic Dynamics, One-sided, Two-sided and Countable State Markov Shifts,", Springer-Verlag, (1998).   Google Scholar

[13]

T. Li and J. A. Yorke, Period three implies chaos,, Amer. Math. Monthly, 82 (1975), 985.  doi: 10.2307/2318254.  Google Scholar

[14]

A. M. Liapunov, "The General Problems of the Stability of Motion" (translated by A. T. Fuller),, Taylor & Francis, (1992).   Google Scholar

[15]

R. Mane, A proof of the $C^1$ stability conjecture,, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 161.  doi: 10.1007/BF02698931.  Google Scholar

[16]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Polon Sci. Sér. Sci. Math., 27 (1979), 167.   Google Scholar

[17]

J. Palis and S. Smale, Structural stability theorems,, Global Analysis, 14 (1970), 223.   Google Scholar

[18]

K. J. Palmer, "Shadowing in Dynamical Systems, Theory and Applications,", Kluwer Academic Publishers, (2000).   Google Scholar

[19]

M. Peixoto, On structural stability,, Ann. of Math., 69 (1959), 199.  doi: 10.2307/1970100.  Google Scholar

[20]

M. Peixoto, Structural stability on two dimensional manifolds,, Topology, 2 (1962), 101.  doi: 10.1016/0040-9383(65)90018-2.  Google Scholar

[21]

H. J. Poincaré, Sur le problème des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1.  doi: 10.1007/BF02392506.  Google Scholar

[22]

H. J. Poincaré, "Les Méthodes Nouvelles de la Mécanique Celeste, Vols. 1-3,", Gauthiers-Villars, (1892).   Google Scholar

[23]

J. Robbin, A structural stability theorem,, Ann. of Math., 94 (1971), 447.  doi: 10.2307/1970766.  Google Scholar

[24]

C. Robinson, Structural stability of $C^1$ flows,, in, 468 (1975), 262.   Google Scholar

[25]

C. Robinson, Structural stability of $C^1$ diffeomorphisms,, J. Differential Equations, 22 (1976), 28.  doi: 10.1016/0022-0396(76)90004-8.  Google Scholar

[26]

C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics and Chaos,", CRC Press, (1999).   Google Scholar

[27]

Y. Shi and G. Chen, Chaos of discrete dynamical systems in complete metric spaces,, Chaos Solit. Fract., 22 (2004), 555.  doi: 10.1016/j.chaos.2004.02.015.  Google Scholar

[28]

Y. Shi and G. Chen, Discrete chaos in Banach spaces,, Science in China, 34 (2004), 595.   Google Scholar

[29]

Y. Shi and G. Chen, Some new criteria of chaos induced by coupled-expanding maps,, in, (2006), 28.   Google Scholar

[30]

Y. Shi, H. Ju and G. Chen, Coupled-expanding maps and one-sided symbolic dynamical systems,, Chaos Solit. Fract., 39 (2009), 2138.  doi: 10.1016/j.chaos.2007.06.090.  Google Scholar

[31]

Y. Shi and P. Yu, Study on chaos induced by turbulent maps in noncompact sets,, Chaos Solit. Fract., 28 (2006), 1165.  doi: 10.1016/j.chaos.2005.08.162.  Google Scholar

[32]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747.  doi: 10.1090/S0002-9904-1967-11798-1.  Google Scholar

[33]

S. Wiggins, "Chaotic Transport in Dynamical Systems,", Springer-Verlag, (1992).   Google Scholar

[34]

X. Yang and Y. Tang, Horseshoes in piecewise continuous maps,, Chaos Solit. Fract., 19 (2004), 841.  doi: 10.1016/S0960-0779(03)00202-9.  Google Scholar

[35]

X. Zhang and Y. Shi, Coupled-expanding maps for irreducible transition matrices,, Int. J. Bifurcation and Chaos, ().   Google Scholar

[36]

X. Zhang, Y. Shi and G. Chen, $A$-coupled-expanding maps in compact sets,, submitted for publication., ().   Google Scholar

[37]

Z. Zhang, "The Princinple of Differential Dynamics,", Scientific Publishing, (2003).   Google Scholar

show all references

References:
[1]

A. A. Andronov and C. E. Chaikin, "Theory of Oscillations" (translated and adapted by S. Lefschetz),, Princeton Univ. Press, (1949).   Google Scholar

[2]

A. Andronov and L. Pontrjagin, Systèmes grossiers,, Dokl. Akad. Nauk. SSSR, 14 (1937), 247.   Google Scholar

[3]

J. Awrejcewicz and M. M. Holicke, "Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods,", World Scientific Publishing Co. Pte. Ltd., (2007).  doi: 10.1142/9789812709103.  Google Scholar

[4]

J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos,, Amer. Math. Monthly, 99 (1992), 332.  doi: 10.2307/2324899.  Google Scholar

[5]

G. D. Birkhoff, "Dynamical Systems,", Amer. Math. Soc., (1927).   Google Scholar

[6]

L. Block and W. Coppel, "Dynamics in One Dimension, Lecture Notes in Math. Vol. 1513,", Springer-Verlag, (1992).   Google Scholar

[7]

L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one dimentional maps,, in, 819 (1980), 18.   Google Scholar

[8]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,", Addison-Wesley, (1989).   Google Scholar

[9]

M. Fečkan, "Topological Degree Approach to Bifurcation Problems,", Springer, (2008).  doi: 10.1007/978-1-4020-8724-0.  Google Scholar

[10]

S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$-stability and $\Omega$-stability conjectures for flows,, Ann. of Math., 145 (1997), 81.  doi: 10.2307/2951824.  Google Scholar

[11]

S. Hu, A proof of $C^1$ stability conjecture for three-dimensional flows,, Trans. Amer. Math. Soc., 342 (1994), 753.  doi: 10.2307/2154651.  Google Scholar

[12]

B. P. Kitchens, "Symbolic Dynamics, One-sided, Two-sided and Countable State Markov Shifts,", Springer-Verlag, (1998).   Google Scholar

[13]

T. Li and J. A. Yorke, Period three implies chaos,, Amer. Math. Monthly, 82 (1975), 985.  doi: 10.2307/2318254.  Google Scholar

[14]

A. M. Liapunov, "The General Problems of the Stability of Motion" (translated by A. T. Fuller),, Taylor & Francis, (1992).   Google Scholar

[15]

R. Mane, A proof of the $C^1$ stability conjecture,, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 161.  doi: 10.1007/BF02698931.  Google Scholar

[16]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Polon Sci. Sér. Sci. Math., 27 (1979), 167.   Google Scholar

[17]

J. Palis and S. Smale, Structural stability theorems,, Global Analysis, 14 (1970), 223.   Google Scholar

[18]

K. J. Palmer, "Shadowing in Dynamical Systems, Theory and Applications,", Kluwer Academic Publishers, (2000).   Google Scholar

[19]

M. Peixoto, On structural stability,, Ann. of Math., 69 (1959), 199.  doi: 10.2307/1970100.  Google Scholar

[20]

M. Peixoto, Structural stability on two dimensional manifolds,, Topology, 2 (1962), 101.  doi: 10.1016/0040-9383(65)90018-2.  Google Scholar

[21]

H. J. Poincaré, Sur le problème des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1.  doi: 10.1007/BF02392506.  Google Scholar

[22]

H. J. Poincaré, "Les Méthodes Nouvelles de la Mécanique Celeste, Vols. 1-3,", Gauthiers-Villars, (1892).   Google Scholar

[23]

J. Robbin, A structural stability theorem,, Ann. of Math., 94 (1971), 447.  doi: 10.2307/1970766.  Google Scholar

[24]

C. Robinson, Structural stability of $C^1$ flows,, in, 468 (1975), 262.   Google Scholar

[25]

C. Robinson, Structural stability of $C^1$ diffeomorphisms,, J. Differential Equations, 22 (1976), 28.  doi: 10.1016/0022-0396(76)90004-8.  Google Scholar

[26]

C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics and Chaos,", CRC Press, (1999).   Google Scholar

[27]

Y. Shi and G. Chen, Chaos of discrete dynamical systems in complete metric spaces,, Chaos Solit. Fract., 22 (2004), 555.  doi: 10.1016/j.chaos.2004.02.015.  Google Scholar

[28]

Y. Shi and G. Chen, Discrete chaos in Banach spaces,, Science in China, 34 (2004), 595.   Google Scholar

[29]

Y. Shi and G. Chen, Some new criteria of chaos induced by coupled-expanding maps,, in, (2006), 28.   Google Scholar

[30]

Y. Shi, H. Ju and G. Chen, Coupled-expanding maps and one-sided symbolic dynamical systems,, Chaos Solit. Fract., 39 (2009), 2138.  doi: 10.1016/j.chaos.2007.06.090.  Google Scholar

[31]

Y. Shi and P. Yu, Study on chaos induced by turbulent maps in noncompact sets,, Chaos Solit. Fract., 28 (2006), 1165.  doi: 10.1016/j.chaos.2005.08.162.  Google Scholar

[32]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747.  doi: 10.1090/S0002-9904-1967-11798-1.  Google Scholar

[33]

S. Wiggins, "Chaotic Transport in Dynamical Systems,", Springer-Verlag, (1992).   Google Scholar

[34]

X. Yang and Y. Tang, Horseshoes in piecewise continuous maps,, Chaos Solit. Fract., 19 (2004), 841.  doi: 10.1016/S0960-0779(03)00202-9.  Google Scholar

[35]

X. Zhang and Y. Shi, Coupled-expanding maps for irreducible transition matrices,, Int. J. Bifurcation and Chaos, ().   Google Scholar

[36]

X. Zhang, Y. Shi and G. Chen, $A$-coupled-expanding maps in compact sets,, submitted for publication., ().   Google Scholar

[37]

Z. Zhang, "The Princinple of Differential Dynamics,", Scientific Publishing, (2003).   Google Scholar

[1]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[2]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[3]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[4]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[5]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[6]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[7]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[8]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[11]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[12]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[13]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[14]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[18]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[19]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]