- Previous Article
- DCDS Home
- This Issue
-
Next Article
Regular level sets of Lyapunov graphs of nonsingular Smale flows on 3-manifolds
Coupled-expanding maps under small perturbations
1. | Department of Mathematics, Shandong University, Jinan, Shandong 250100, China, China |
2. | Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R. |
References:
[1] |
A. A. Andronov and C. E. Chaikin, "Theory of Oscillations" (translated and adapted by S. Lefschetz), Princeton Univ. Press, Princeton, 1949. |
[2] |
A. Andronov and L. Pontrjagin, Systèmes grossiers, Dokl. Akad. Nauk. SSSR, 14 (1937), 247-251. |
[3] |
J. Awrejcewicz and M. M. Holicke, "Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods," World Scientific Publishing Co. Pte. Ltd., Singapore, 2007.
doi: 10.1142/9789812709103. |
[4] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.
doi: 10.2307/2324899. |
[5] |
G. D. Birkhoff, "Dynamical Systems," Amer. Math. Soc., United States of America, 1927. |
[6] |
L. Block and W. Coppel, "Dynamics in One Dimension, Lecture Notes in Math. Vol. 1513," Springer-Verlag, Berlin/Heidelberg, 1992. |
[7] |
L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one dimentional maps, in "Global Theory of Dynamical Systems, Lecture Notes in Math. Vol. 819," Springer-Verlag, Berlin, (1980), 18-34. |
[8] |
R. L. Devaney, "An Introduction to Chaotic Dynamical Systems," Addison-Wesley, New York, 1989. |
[9] |
M. Fečkan, "Topological Degree Approach to Bifurcation Problems," Springer, New York, 2008.
doi: 10.1007/978-1-4020-8724-0. |
[10] |
S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$-stability and $\Omega$-stability conjectures for flows, Ann. of Math., 145 (1997), 81-137.
doi: 10.2307/2951824. |
[11] |
S. Hu, A proof of $C^1$ stability conjecture for three-dimensional flows, Trans. Amer. Math. Soc., 342 (1994), 753-772.
doi: 10.2307/2154651. |
[12] |
B. P. Kitchens, "Symbolic Dynamics, One-sided, Two-sided and Countable State Markov Shifts," Springer-Verlag, New York, 1998. |
[13] |
T. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.
doi: 10.2307/2318254. |
[14] |
A. M. Liapunov, "The General Problems of the Stability of Motion" (translated by A. T. Fuller), Taylor & Francis, London, 1992. |
[15] |
R. Mane, A proof of the $C^1$ stability conjecture, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 161-210.
doi: 10.1007/BF02698931. |
[16] |
M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon Sci. Sér. Sci. Math., 27 (1979), 167-169. |
[17] |
J. Palis and S. Smale, Structural stability theorems, Global Analysis, Proc. Symp. Pure Math., 14 (1970), 223-231. |
[18] |
K. J. Palmer, "Shadowing in Dynamical Systems, Theory and Applications," Kluwer Academic Publishers, Dordrecht, 2000. |
[19] |
M. Peixoto, On structural stability, Ann. of Math., 69 (1959), 199-222.
doi: 10.2307/1970100. |
[20] |
M. Peixoto, Structural stability on two dimensional manifolds, Topology, 2 (1962), 101-120.
doi: 10.1016/0040-9383(65)90018-2. |
[21] |
H. J. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta Mathematica, 13 (1890), 1-270.
doi: 10.1007/BF02392506. |
[22] |
H. J. Poincaré, "Les Méthodes Nouvelles de la Mécanique Celeste, Vols. 1-3," Gauthiers-Villars, Paris, 1892, 1893, 1899; English translation edited by D. Goroff, Amer. Institute of Physics, New York, 1993. |
[23] |
J. Robbin, A structural stability theorem, Ann. of Math., 94 (1971), 447-493.
doi: 10.2307/1970766. |
[24] |
C. Robinson, Structural stability of $C^1$ flows, in "Lecture Notes in Math. Vol. 468," Springer-Verlag, Berlin/Heidelberg, (1975), 262-277. |
[25] |
C. Robinson, Structural stability of $C^1$ diffeomorphisms, J. Differential Equations, 22 (1976), 28-73.
doi: 10.1016/0022-0396(76)90004-8. |
[26] |
C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics and Chaos," CRC Press, Florida, 1999. |
[27] |
Y. Shi and G. Chen, Chaos of discrete dynamical systems in complete metric spaces, Chaos Solit. Fract., 22 (2004), 555-571.
doi: 10.1016/j.chaos.2004.02.015. |
[28] |
Y. Shi and G. Chen, Discrete chaos in Banach spaces, Science in China, Ser. A: Mathematics, Chinese version: 34 (2004), 595-609; English version: 48 (2005), 222-238. |
[29] |
Y. Shi and G. Chen, Some new criteria of chaos induced by coupled-expanding maps, in "Proc. 1st IFAC Conference on Analysis and Control of Chaotic Systems," Reims, France, June 28-30, (2006), 157-162. |
[30] |
Y. Shi, H. Ju and G. Chen, Coupled-expanding maps and one-sided symbolic dynamical systems, Chaos Solit. Fract., 39 (2009), 2138-2149.
doi: 10.1016/j.chaos.2007.06.090. |
[31] |
Y. Shi and P. Yu, Study on chaos induced by turbulent maps in noncompact sets, Chaos Solit. Fract., 28 (2006), 1165-1180.
doi: 10.1016/j.chaos.2005.08.162. |
[32] |
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[33] |
S. Wiggins, "Chaotic Transport in Dynamical Systems," Springer-Verlag, New York, 1992. |
[34] |
X. Yang and Y. Tang, Horseshoes in piecewise continuous maps, Chaos Solit. Fract., 19 (2004), 841-845.
doi: 10.1016/S0960-0779(03)00202-9. |
[35] |
X. Zhang and Y. Shi, Coupled-expanding maps for irreducible transition matrices,, Int. J. Bifurcation and Chaos, ().
|
[36] |
X. Zhang, Y. Shi and G. Chen, $A$-coupled-expanding maps in compact sets,, submitted for publication., ().
|
[37] |
Z. Zhang, "The Princinple of Differential Dynamics," Scientific Publishing, Beijing, 2003. |
show all references
References:
[1] |
A. A. Andronov and C. E. Chaikin, "Theory of Oscillations" (translated and adapted by S. Lefschetz), Princeton Univ. Press, Princeton, 1949. |
[2] |
A. Andronov and L. Pontrjagin, Systèmes grossiers, Dokl. Akad. Nauk. SSSR, 14 (1937), 247-251. |
[3] |
J. Awrejcewicz and M. M. Holicke, "Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods," World Scientific Publishing Co. Pte. Ltd., Singapore, 2007.
doi: 10.1142/9789812709103. |
[4] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.
doi: 10.2307/2324899. |
[5] |
G. D. Birkhoff, "Dynamical Systems," Amer. Math. Soc., United States of America, 1927. |
[6] |
L. Block and W. Coppel, "Dynamics in One Dimension, Lecture Notes in Math. Vol. 1513," Springer-Verlag, Berlin/Heidelberg, 1992. |
[7] |
L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one dimentional maps, in "Global Theory of Dynamical Systems, Lecture Notes in Math. Vol. 819," Springer-Verlag, Berlin, (1980), 18-34. |
[8] |
R. L. Devaney, "An Introduction to Chaotic Dynamical Systems," Addison-Wesley, New York, 1989. |
[9] |
M. Fečkan, "Topological Degree Approach to Bifurcation Problems," Springer, New York, 2008.
doi: 10.1007/978-1-4020-8724-0. |
[10] |
S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$-stability and $\Omega$-stability conjectures for flows, Ann. of Math., 145 (1997), 81-137.
doi: 10.2307/2951824. |
[11] |
S. Hu, A proof of $C^1$ stability conjecture for three-dimensional flows, Trans. Amer. Math. Soc., 342 (1994), 753-772.
doi: 10.2307/2154651. |
[12] |
B. P. Kitchens, "Symbolic Dynamics, One-sided, Two-sided and Countable State Markov Shifts," Springer-Verlag, New York, 1998. |
[13] |
T. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.
doi: 10.2307/2318254. |
[14] |
A. M. Liapunov, "The General Problems of the Stability of Motion" (translated by A. T. Fuller), Taylor & Francis, London, 1992. |
[15] |
R. Mane, A proof of the $C^1$ stability conjecture, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 161-210.
doi: 10.1007/BF02698931. |
[16] |
M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon Sci. Sér. Sci. Math., 27 (1979), 167-169. |
[17] |
J. Palis and S. Smale, Structural stability theorems, Global Analysis, Proc. Symp. Pure Math., 14 (1970), 223-231. |
[18] |
K. J. Palmer, "Shadowing in Dynamical Systems, Theory and Applications," Kluwer Academic Publishers, Dordrecht, 2000. |
[19] |
M. Peixoto, On structural stability, Ann. of Math., 69 (1959), 199-222.
doi: 10.2307/1970100. |
[20] |
M. Peixoto, Structural stability on two dimensional manifolds, Topology, 2 (1962), 101-120.
doi: 10.1016/0040-9383(65)90018-2. |
[21] |
H. J. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta Mathematica, 13 (1890), 1-270.
doi: 10.1007/BF02392506. |
[22] |
H. J. Poincaré, "Les Méthodes Nouvelles de la Mécanique Celeste, Vols. 1-3," Gauthiers-Villars, Paris, 1892, 1893, 1899; English translation edited by D. Goroff, Amer. Institute of Physics, New York, 1993. |
[23] |
J. Robbin, A structural stability theorem, Ann. of Math., 94 (1971), 447-493.
doi: 10.2307/1970766. |
[24] |
C. Robinson, Structural stability of $C^1$ flows, in "Lecture Notes in Math. Vol. 468," Springer-Verlag, Berlin/Heidelberg, (1975), 262-277. |
[25] |
C. Robinson, Structural stability of $C^1$ diffeomorphisms, J. Differential Equations, 22 (1976), 28-73.
doi: 10.1016/0022-0396(76)90004-8. |
[26] |
C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics and Chaos," CRC Press, Florida, 1999. |
[27] |
Y. Shi and G. Chen, Chaos of discrete dynamical systems in complete metric spaces, Chaos Solit. Fract., 22 (2004), 555-571.
doi: 10.1016/j.chaos.2004.02.015. |
[28] |
Y. Shi and G. Chen, Discrete chaos in Banach spaces, Science in China, Ser. A: Mathematics, Chinese version: 34 (2004), 595-609; English version: 48 (2005), 222-238. |
[29] |
Y. Shi and G. Chen, Some new criteria of chaos induced by coupled-expanding maps, in "Proc. 1st IFAC Conference on Analysis and Control of Chaotic Systems," Reims, France, June 28-30, (2006), 157-162. |
[30] |
Y. Shi, H. Ju and G. Chen, Coupled-expanding maps and one-sided symbolic dynamical systems, Chaos Solit. Fract., 39 (2009), 2138-2149.
doi: 10.1016/j.chaos.2007.06.090. |
[31] |
Y. Shi and P. Yu, Study on chaos induced by turbulent maps in noncompact sets, Chaos Solit. Fract., 28 (2006), 1165-1180.
doi: 10.1016/j.chaos.2005.08.162. |
[32] |
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[33] |
S. Wiggins, "Chaotic Transport in Dynamical Systems," Springer-Verlag, New York, 1992. |
[34] |
X. Yang and Y. Tang, Horseshoes in piecewise continuous maps, Chaos Solit. Fract., 19 (2004), 841-845.
doi: 10.1016/S0960-0779(03)00202-9. |
[35] |
X. Zhang and Y. Shi, Coupled-expanding maps for irreducible transition matrices,, Int. J. Bifurcation and Chaos, ().
|
[36] |
X. Zhang, Y. Shi and G. Chen, $A$-coupled-expanding maps in compact sets,, submitted for publication., ().
|
[37] |
Z. Zhang, "The Princinple of Differential Dynamics," Scientific Publishing, Beijing, 2003. |
[1] |
Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010 |
[2] |
M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure and Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743 |
[3] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409 |
[4] |
Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971 |
[5] |
M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems and Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219 |
[6] |
Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257 |
[7] |
Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure and Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861 |
[8] |
Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763 |
[9] |
Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997 |
[10] |
Zayd Hajjej, Mohammad Al-Gharabli, Salim Messaoudi. Stability of a suspension bridge with a localized structural damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1165-1181. doi: 10.3934/dcdss.2021089 |
[11] |
Jean-Baptiste Bardet, Bastien Fernandez. Extensive escape rate in lattices of weakly coupled expanding maps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 669-684. doi: 10.3934/dcds.2011.31.669 |
[12] |
Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463 |
[13] |
Wancheng Sheng, Tong Zhang. Structural stability of solutions to the Riemann problem for a scalar nonconvex CJ combustion model. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 651-667. doi: 10.3934/dcds.2009.25.651 |
[14] |
José F. Alves. Non-uniformly expanding dynamics: Stability from a probabilistic viewpoint. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 363-375. doi: 10.3934/dcds.2001.7.363 |
[15] |
Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67 |
[16] |
Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141 |
[17] |
Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations and Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003 |
[18] |
Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control and Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010 |
[19] |
Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809 |
[20] |
Lev M. Lerman, Elena V. Gubina. Nonautonomous gradient-like vector fields on the circle: Classification, structural stability and autonomization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1341-1367. doi: 10.3934/dcdss.2020076 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]