• Previous Article
    Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields
  • DCDS Home
  • This Issue
  • Next Article
    A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations
October  2011, 29(4): 1345-1365. doi: 10.3934/dcds.2011.29.1345

On uniqueness of a weak solution of one-dimensional concrete carbonation problem

1. 

Department of Mathematics, Faculty of Education, Gifu University, Yanagido 1-1, Gifu, 501-1193

2. 

CASA - Centre for Analysis, Scientific computing and Applications, Department of Mathematics and Computer Science, Institute of Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven

Received  January 2010 Revised  August 2010 Published  December 2010

In our previous works we studied a one-dimensional free-boundary model related to the aggressive penetration of gaseous carbon dioxide in unsaturated concrete. Essentially, global existence and uniqueness of weak solutions to the model were obtained when the initial functions are bounded on the domain. In this paper we investigate the well-posedness of the problem for the case when the initial functions belong to a $L^2-$ class. Specifically, the uniqueness of weak solutions is proved by applying the dual equation method.
Citation: Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of one-dimensional concrete carbonation problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1345-1365. doi: 10.3934/dcds.2011.29.1345
References:
[1]

T. Aiki, Weak solutions for Falk's model of shape memory alloys,, Math. Methods Appl. Sci., 23 (2000), 299. doi: 10.1002/(SICI)1099-1476(20000310)23:4<299::AID-MMA115>3.0.CO;2-D.

[2]

T. Aiki, Uniqueness for multi-dimensional Stefan problems with nonlinear boundary conditions described by maximal monotone operators,, Differential Integral Equations, 15 (2002), 973.

[3]

T. Aiki and A. Muntean, Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures,, Adv. Math. Sci. Appl., 19 (2009), 109.

[4]

T. Aiki and A. Muntean, Large time behavior of solutions to a concrete carbonation problem,, Commun. Pure Appl. Anal., 9 (2010), 1117. doi: 10.3934/cpaa.2010.9.1117.

[5]

T. Aiki and A. Muntean, Mathematical treatment of concrete carbonation process,, in, 32 (2010), 231.

[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", Transl. Math. Monograph, 23 (1968).

[7]

J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).

[8]

A. Muntean, "A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation,", Ph.D. Thesis, (2006).

[9]

A. Muntean and M. Böhm, A moving-boundary problem for concrete carbonation: global existence and uniqueness of solutions,, Journal of Mathematical Analysis and Applications, 350 (2009), 234. doi: 10.1016/j.jmaa.2008.09.044.

[10]

M. Niezgódka and I. Pawlow, A generalized Stefan problem in several space variables,, Applied Math. Opt., 9 (1983), 193. doi: 10.1007/BF01460125.

show all references

References:
[1]

T. Aiki, Weak solutions for Falk's model of shape memory alloys,, Math. Methods Appl. Sci., 23 (2000), 299. doi: 10.1002/(SICI)1099-1476(20000310)23:4<299::AID-MMA115>3.0.CO;2-D.

[2]

T. Aiki, Uniqueness for multi-dimensional Stefan problems with nonlinear boundary conditions described by maximal monotone operators,, Differential Integral Equations, 15 (2002), 973.

[3]

T. Aiki and A. Muntean, Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures,, Adv. Math. Sci. Appl., 19 (2009), 109.

[4]

T. Aiki and A. Muntean, Large time behavior of solutions to a concrete carbonation problem,, Commun. Pure Appl. Anal., 9 (2010), 1117. doi: 10.3934/cpaa.2010.9.1117.

[5]

T. Aiki and A. Muntean, Mathematical treatment of concrete carbonation process,, in, 32 (2010), 231.

[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", Transl. Math. Monograph, 23 (1968).

[7]

J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).

[8]

A. Muntean, "A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation,", Ph.D. Thesis, (2006).

[9]

A. Muntean and M. Böhm, A moving-boundary problem for concrete carbonation: global existence and uniqueness of solutions,, Journal of Mathematical Analysis and Applications, 350 (2009), 234. doi: 10.1016/j.jmaa.2008.09.044.

[10]

M. Niezgódka and I. Pawlow, A generalized Stefan problem in several space variables,, Applied Math. Opt., 9 (1983), 193. doi: 10.1007/BF01460125.

[1]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[2]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[3]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[4]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[5]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[6]

Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261

[7]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[8]

Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179

[9]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

[10]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

[11]

Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44

[12]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[13]

Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297

[14]

Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713

[15]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[16]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[17]

Nam-Yong Lee, Bradley J. Lucier. Preconditioned conjugate gradient method for boundary artifact-free image deblurring. Inverse Problems & Imaging, 2016, 10 (1) : 195-225. doi: 10.3934/ipi.2016.10.195

[18]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[19]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 667-684. doi: 10.3934/krm.2015.8.667

[20]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]