October  2011, 29(4): 1367-1391. doi: 10.3934/dcds.2011.29.1367

A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations

1. 

Department of Mathematics, UCLA, Los Angeles, CA, 90095

2. 

Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences, Stillwater, OK 74078

3. 

Department of Mechanical Engineering, University of California, Los Angeles, CA, 90095-1555, United States

Received  December 2009 Revised  July 2010 Published  December 2010

We consider a class of splitting schemes for fourth order nonlinear diffusion equations. Standard backward-time differencing requires the solution of a higher order elliptic problem, which can be both computationally expensive and work-intensive to code, in higher space dimensions. Recent papers in the literature provide computational evidence that a biharmonic-modified, forward time-stepping method, can provide good results for these problems. We provide a theoretical explanation of the results. For a basic nonlinear 'thin film' type equation we prove $H^1$ stability of the method given very simple boundedness constraints of the numerical solution. For a more general class of long-wave unstable problems, we prove stability and convergence, using only constraints on the smooth solution. Computational examples include both the model of 'thin film' type problems and a quantitative model for electrowetting in a Hele-Shaw cell (Lu et al J. Fluid Mech. 2007). The methods considered here are related to 'convexity splitting' methods for gradient flows with nonconvex energies.
Citation: Andrea L. Bertozzi, Ning Ju, Hsiang-Wei Lu. A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1367-1391. doi: 10.3934/dcds.2011.29.1367
References:
[1]

J. W. Barrett and J. F. Blowey, Finite element approximation of a model for phase seperation of muti-component alloy with non-smooth free energy., Numer. Math., 77 (1997), 1.  doi: 10.1007/s002110050276.  Google Scholar

[2]

J. W. Barrett and J. F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with a concentration-dependent mobility matrix,, IMA Journal of Numerical Analysis, 18 (1998), 287.  doi: 10.1093/imanum/18.2.287.  Google Scholar

[3]

J. W. Barrett and J. F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with nonsmooth free energy and a concentration dependent mobility matrix,, Math. Models Methods Appl. Sci., 9 (1999), 627.  doi: 10.1142/S0218202599000336.  Google Scholar

[4]

J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility,, Mathematics of Computation, 68 (1999), 487.  doi: 10.1090/S0025-5718-99-01015-7.  Google Scholar

[5]

J. W. Barrett, J. F. Blowey and H. Garcke, Finite element approximation of a fourth order nonlinear degenerate parabolic equation,, Numer. Math., 80 (1998), 525.  doi: 10.1007/s002110050377.  Google Scholar

[6]

J. W. Barrett, J. F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility,, SIAM J. Num. Anal., 37 (1999), 286.  doi: 10.1137/S0036142997331669.  Google Scholar

[7]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, J. Diff. Equations, 83 (1990), 179.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[8]

A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations,, Comm. Pure Appl. Math., 51 (1998), 625.  doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9.  Google Scholar

[9]

A. L. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: Regularity and long time behavior of weak solutions,, Comm. Pur. Appl. Math., 49 (1996), 85.  doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2.  Google Scholar

[10]

A. Bertozzi and M. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations,, Indiana Univ. Math. J., 32 (2000), 1323.   Google Scholar

[11]

A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films,, Notices of the American Math. Soc., 45 (1998), 689.   Google Scholar

[12]

A. L. Bertozzi, M. P. Brenner, T. F. Dupont and L. P. Kadanoff, Singularities and similarities in interface flow,, in, 100 (1994), 155.   Google Scholar

[13]

A. L. Bertozzi, G. Grün and T. P. Witelski, Dewetting films: bifurcations and concentrations,, Nonlinearity, 14 (2001), 1569.  doi: 10.1088/0951-7715/14/6/309.  Google Scholar

[14]

M. Brenner and A. Bertozzi, Spreading of droplets on a solid surface,, Phys. Rev. Lett., 71 (1993), 593.  doi: 10.1103/PhysRevLett.71.593.  Google Scholar

[15]

P. Constantin, T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, M. J. Shelley and S.-M. Zhou, Droplet breakup in a model of the Hele-Shaw cell,, Physical Review E, 47 (1993), 4169.  doi: 10.1103/PhysRevE.47.4169.  Google Scholar

[16]

J. Douglas, Jr. and T. Dupont, Alternating-direction Galerkin methods on rectangles,, in, (1971), 133.   Google Scholar

[17]

T. F. Dupont, R. E. Goldstein, L. P. Kadanoff and Su-Min Zhou, Finite-time singularity formation in Hele Shaw systems,, Physical Review E, 47 (1993), 4182.  doi: 10.1103/PhysRevE.47.4182.  Google Scholar

[18]

P. Ehrhard and S. H. Davis, Non-isothermal spreading of liquid drops on horizontal plates,, J. Fluid. Mech., 229 (1991), 365.  doi: 10.1017/S0022112091003063.  Google Scholar

[19]

C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations,, SIAM J. Numer. Anal., 30 (1993), 1622.  doi: 10.1137/0730084.  Google Scholar

[20]

C. M. Elliott and H. Garke, On the cahn hilliard equation with degenerate mobility,, SIAM J. Math. Anal., 27 (1996), 404.  doi: 10.1137/S0036141094267662.  Google Scholar

[21]

D. Eyre, An unconditionally stable one-step scheme for gradient systems,, Unpublished paper, (1998).   Google Scholar

[22]

R. Ferreira and F. Bernis, Source-type solutions to thin-film equations in higher dimensions,, Euro. J. Appl. Math., 9 (1997), 507.  doi: 10.1017/S0956792597003197.  Google Scholar

[23]

K. Glasner, Nonlinear preconditioning for diffuse interfaces,, J. Comp. Phys., 174 (2001), 695.  doi: 10.1006/jcph.2001.6933.  Google Scholar

[24]

K. B. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.016302.  Google Scholar

[25]

K. Glasner, A diffuse interface approach to Hele-Shaw flow,, Nonlinearity, 16 (2003), 49.  doi: 10.1088/0951-7715/16/1/304.  Google Scholar

[26]

K. B. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.016302.  Google Scholar

[27]

R. E. Goldstein, A. I. Pesci and M. J. Shelley, Topology transitions and singularities in viscous flows,, Physical Review Letters, 70 (1993), 3043.  doi: 10.1103/PhysRevLett.70.3043.  Google Scholar

[28]

R. E. Goldstein, A. I. Pesci and M. J. Shelley, An attracting manifold for a viscous topology transition,, Physical Review Letters, 75 (1995), 3665.  doi: 10.1103/PhysRevLett.75.3665.  Google Scholar

[29]

H. P. Greenspan, On the motion of a small viscous droplet that wets a surface,, J. Fluid Mech., 84 (1978), 125.  doi: 10.1017/S0022112078000075.  Google Scholar

[30]

H. P. Greenspan and B. M. McCay, On the wetting of a surface by a very viscous fluid,, Studies in Applied Math., 64 (1981), 95.   Google Scholar

[31]

J. Greer, A. Bertozzi and G. Sapiro, Fourth order partial differential equations on general geometries,, J. Computational Physics, 216 (2006), 216.  doi: 10.1016/j.jcp.2005.11.031.  Google Scholar

[32]

G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation,, Num. Math., 87 (2000), 113.  doi: 10.1007/s002110000197.  Google Scholar

[33]

L. M. Hocking, A moving fluid interface on a rough surface,, Journal of Fluid Mechanics, 76 (1976), 801.  doi: 10.1017/S0022112076000906.  Google Scholar

[34]

L. M. Hocking, A moving fluid interface. Part 2. The removal of the force singularity by a slip flow,, Journal of Fluid Mechanics, 79 (1977), 209.  doi: 10.1017/S0022112077000123.  Google Scholar

[35]

L. M. Hocking, Sliding and spreading of thin two-dimensional drops,, Q. J. Mech. Appl. Math., 34 (1981), 37.  doi: 10.1093/qjmam/34.1.37.  Google Scholar

[36]

L. M. Hocking, Rival contact-angle models and the spreading of drops,, J. Fluid. Mech., 239 (1992), 671.  doi: 10.1017/S0022112092004579.  Google Scholar

[37]

T. Hou, J. S. Lowengrub and M. J. Shelly, Removing the stiffness from interfacial flow with surface-tension,, J. Comp. Phys., 114 (1994), 312.  doi: 10.1006/jcph.1994.1170.  Google Scholar

[38]

M. G. Lippman, Relations entre les phènoménes électriques et capillaires,, Ann. Chim. Phys., 5 (1875), 494.   Google Scholar

[39]

H. W. Lu, K. Glasner, C. J. Kim and A. L. Bertozzi, A diffuse interface model for electrowetting droplets in a Hele-Shaw cell,, Journal of Fluid Mechanics, 590 (2007), 411.  doi: 10.1017/S0022112007008154.  Google Scholar

[40]

J. A. Moriarty, L. W. Schwartz and E. O Tuck, Unsteady spreading of thin liquid films with small surface tension,, Phys. Fluids A, 3 (1991), 733.  doi: 10.1063/1.858006.  Google Scholar

[41]

T. G. Myers, Thin films with high surface tension,, SIAM Rev., 40 (1998), 441.  doi: 10.1137/S003614459529284X.  Google Scholar

[42]

P. Neogi and C. A. Miller, Spreading kinetics of a drop on a smooth solid surface,, J. Colloid Interface Sci., 86 (1982), 525.  doi: 10.1016/0021-9797(82)90097-2.  Google Scholar

[43]

A. Oron, S. H. Davis and S. George Bankoff, Long-scale evolution of thin liquid films,, Rev. Mod. Phys., 69 (1997), 931.  doi: 10.1103/RevModPhys.69.931.  Google Scholar

[44]

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes in C,", Second Edition, (1993).   Google Scholar

[45]

C.-B. Schoenlieb and A. Bertozzi, Unconditionally stable schemes for higher order inpainting,, 2010., ().   Google Scholar

[46]

M. J. Shelley, R. E. Goldstein and A. I. Pesci, Topological transitions in Hele-Shaw flow,, in, (1993), 167.   Google Scholar

[47]

P. Smereka, Semi-implicit level set methods for curvature flow and for motion by surface diffusion,, J. Sci. Comp., 19 (2003), 439.  doi: 10.1023/A:1025324613450.  Google Scholar

[48]

S. M. Troian, E. Herbolzheimer, S. A. Safran and J. F. Joanny, Fingering instabilities of driven spreading films,, Europhys. Lett., 10 (1989), 25.  doi: 10.1209/0295-5075/10/1/005.  Google Scholar

[49]

B. P. Vollmayr-Lee and A. D. Rutenberg, Fast and accurate coarsening simulation with an unconditionally stable time step,, Physical Review E, 68 (2003), 1.  doi: 10.1103/PhysRevE.68.066703.  Google Scholar

[50]

T. P. Witelski and M. Bowen, Adi methods for high order parabolic equations,, Appl. Num. Anal., 45 (2003), 331.   Google Scholar

[51]

T. P. Witelski, Equilibrium solutions of a degenerate singular Cahn-Hilliard equation,, Applied Mathematics Letters, 11 (1998), 127.  doi: 10.1016/S0893-9659(98)00092-5.  Google Scholar

[52]

L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations,, SIAM J. Numer. Anal., 37 (2000), 523.  doi: 10.1137/S0036142998335698.  Google Scholar

show all references

References:
[1]

J. W. Barrett and J. F. Blowey, Finite element approximation of a model for phase seperation of muti-component alloy with non-smooth free energy., Numer. Math., 77 (1997), 1.  doi: 10.1007/s002110050276.  Google Scholar

[2]

J. W. Barrett and J. F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with a concentration-dependent mobility matrix,, IMA Journal of Numerical Analysis, 18 (1998), 287.  doi: 10.1093/imanum/18.2.287.  Google Scholar

[3]

J. W. Barrett and J. F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with nonsmooth free energy and a concentration dependent mobility matrix,, Math. Models Methods Appl. Sci., 9 (1999), 627.  doi: 10.1142/S0218202599000336.  Google Scholar

[4]

J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility,, Mathematics of Computation, 68 (1999), 487.  doi: 10.1090/S0025-5718-99-01015-7.  Google Scholar

[5]

J. W. Barrett, J. F. Blowey and H. Garcke, Finite element approximation of a fourth order nonlinear degenerate parabolic equation,, Numer. Math., 80 (1998), 525.  doi: 10.1007/s002110050377.  Google Scholar

[6]

J. W. Barrett, J. F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility,, SIAM J. Num. Anal., 37 (1999), 286.  doi: 10.1137/S0036142997331669.  Google Scholar

[7]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, J. Diff. Equations, 83 (1990), 179.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[8]

A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations,, Comm. Pure Appl. Math., 51 (1998), 625.  doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9.  Google Scholar

[9]

A. L. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: Regularity and long time behavior of weak solutions,, Comm. Pur. Appl. Math., 49 (1996), 85.  doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2.  Google Scholar

[10]

A. Bertozzi and M. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations,, Indiana Univ. Math. J., 32 (2000), 1323.   Google Scholar

[11]

A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films,, Notices of the American Math. Soc., 45 (1998), 689.   Google Scholar

[12]

A. L. Bertozzi, M. P. Brenner, T. F. Dupont and L. P. Kadanoff, Singularities and similarities in interface flow,, in, 100 (1994), 155.   Google Scholar

[13]

A. L. Bertozzi, G. Grün and T. P. Witelski, Dewetting films: bifurcations and concentrations,, Nonlinearity, 14 (2001), 1569.  doi: 10.1088/0951-7715/14/6/309.  Google Scholar

[14]

M. Brenner and A. Bertozzi, Spreading of droplets on a solid surface,, Phys. Rev. Lett., 71 (1993), 593.  doi: 10.1103/PhysRevLett.71.593.  Google Scholar

[15]

P. Constantin, T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, M. J. Shelley and S.-M. Zhou, Droplet breakup in a model of the Hele-Shaw cell,, Physical Review E, 47 (1993), 4169.  doi: 10.1103/PhysRevE.47.4169.  Google Scholar

[16]

J. Douglas, Jr. and T. Dupont, Alternating-direction Galerkin methods on rectangles,, in, (1971), 133.   Google Scholar

[17]

T. F. Dupont, R. E. Goldstein, L. P. Kadanoff and Su-Min Zhou, Finite-time singularity formation in Hele Shaw systems,, Physical Review E, 47 (1993), 4182.  doi: 10.1103/PhysRevE.47.4182.  Google Scholar

[18]

P. Ehrhard and S. H. Davis, Non-isothermal spreading of liquid drops on horizontal plates,, J. Fluid. Mech., 229 (1991), 365.  doi: 10.1017/S0022112091003063.  Google Scholar

[19]

C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations,, SIAM J. Numer. Anal., 30 (1993), 1622.  doi: 10.1137/0730084.  Google Scholar

[20]

C. M. Elliott and H. Garke, On the cahn hilliard equation with degenerate mobility,, SIAM J. Math. Anal., 27 (1996), 404.  doi: 10.1137/S0036141094267662.  Google Scholar

[21]

D. Eyre, An unconditionally stable one-step scheme for gradient systems,, Unpublished paper, (1998).   Google Scholar

[22]

R. Ferreira and F. Bernis, Source-type solutions to thin-film equations in higher dimensions,, Euro. J. Appl. Math., 9 (1997), 507.  doi: 10.1017/S0956792597003197.  Google Scholar

[23]

K. Glasner, Nonlinear preconditioning for diffuse interfaces,, J. Comp. Phys., 174 (2001), 695.  doi: 10.1006/jcph.2001.6933.  Google Scholar

[24]

K. B. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.016302.  Google Scholar

[25]

K. Glasner, A diffuse interface approach to Hele-Shaw flow,, Nonlinearity, 16 (2003), 49.  doi: 10.1088/0951-7715/16/1/304.  Google Scholar

[26]

K. B. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.016302.  Google Scholar

[27]

R. E. Goldstein, A. I. Pesci and M. J. Shelley, Topology transitions and singularities in viscous flows,, Physical Review Letters, 70 (1993), 3043.  doi: 10.1103/PhysRevLett.70.3043.  Google Scholar

[28]

R. E. Goldstein, A. I. Pesci and M. J. Shelley, An attracting manifold for a viscous topology transition,, Physical Review Letters, 75 (1995), 3665.  doi: 10.1103/PhysRevLett.75.3665.  Google Scholar

[29]

H. P. Greenspan, On the motion of a small viscous droplet that wets a surface,, J. Fluid Mech., 84 (1978), 125.  doi: 10.1017/S0022112078000075.  Google Scholar

[30]

H. P. Greenspan and B. M. McCay, On the wetting of a surface by a very viscous fluid,, Studies in Applied Math., 64 (1981), 95.   Google Scholar

[31]

J. Greer, A. Bertozzi and G. Sapiro, Fourth order partial differential equations on general geometries,, J. Computational Physics, 216 (2006), 216.  doi: 10.1016/j.jcp.2005.11.031.  Google Scholar

[32]

G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation,, Num. Math., 87 (2000), 113.  doi: 10.1007/s002110000197.  Google Scholar

[33]

L. M. Hocking, A moving fluid interface on a rough surface,, Journal of Fluid Mechanics, 76 (1976), 801.  doi: 10.1017/S0022112076000906.  Google Scholar

[34]

L. M. Hocking, A moving fluid interface. Part 2. The removal of the force singularity by a slip flow,, Journal of Fluid Mechanics, 79 (1977), 209.  doi: 10.1017/S0022112077000123.  Google Scholar

[35]

L. M. Hocking, Sliding and spreading of thin two-dimensional drops,, Q. J. Mech. Appl. Math., 34 (1981), 37.  doi: 10.1093/qjmam/34.1.37.  Google Scholar

[36]

L. M. Hocking, Rival contact-angle models and the spreading of drops,, J. Fluid. Mech., 239 (1992), 671.  doi: 10.1017/S0022112092004579.  Google Scholar

[37]

T. Hou, J. S. Lowengrub and M. J. Shelly, Removing the stiffness from interfacial flow with surface-tension,, J. Comp. Phys., 114 (1994), 312.  doi: 10.1006/jcph.1994.1170.  Google Scholar

[38]

M. G. Lippman, Relations entre les phènoménes électriques et capillaires,, Ann. Chim. Phys., 5 (1875), 494.   Google Scholar

[39]

H. W. Lu, K. Glasner, C. J. Kim and A. L. Bertozzi, A diffuse interface model for electrowetting droplets in a Hele-Shaw cell,, Journal of Fluid Mechanics, 590 (2007), 411.  doi: 10.1017/S0022112007008154.  Google Scholar

[40]

J. A. Moriarty, L. W. Schwartz and E. O Tuck, Unsteady spreading of thin liquid films with small surface tension,, Phys. Fluids A, 3 (1991), 733.  doi: 10.1063/1.858006.  Google Scholar

[41]

T. G. Myers, Thin films with high surface tension,, SIAM Rev., 40 (1998), 441.  doi: 10.1137/S003614459529284X.  Google Scholar

[42]

P. Neogi and C. A. Miller, Spreading kinetics of a drop on a smooth solid surface,, J. Colloid Interface Sci., 86 (1982), 525.  doi: 10.1016/0021-9797(82)90097-2.  Google Scholar

[43]

A. Oron, S. H. Davis and S. George Bankoff, Long-scale evolution of thin liquid films,, Rev. Mod. Phys., 69 (1997), 931.  doi: 10.1103/RevModPhys.69.931.  Google Scholar

[44]

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes in C,", Second Edition, (1993).   Google Scholar

[45]

C.-B. Schoenlieb and A. Bertozzi, Unconditionally stable schemes for higher order inpainting,, 2010., ().   Google Scholar

[46]

M. J. Shelley, R. E. Goldstein and A. I. Pesci, Topological transitions in Hele-Shaw flow,, in, (1993), 167.   Google Scholar

[47]

P. Smereka, Semi-implicit level set methods for curvature flow and for motion by surface diffusion,, J. Sci. Comp., 19 (2003), 439.  doi: 10.1023/A:1025324613450.  Google Scholar

[48]

S. M. Troian, E. Herbolzheimer, S. A. Safran and J. F. Joanny, Fingering instabilities of driven spreading films,, Europhys. Lett., 10 (1989), 25.  doi: 10.1209/0295-5075/10/1/005.  Google Scholar

[49]

B. P. Vollmayr-Lee and A. D. Rutenberg, Fast and accurate coarsening simulation with an unconditionally stable time step,, Physical Review E, 68 (2003), 1.  doi: 10.1103/PhysRevE.68.066703.  Google Scholar

[50]

T. P. Witelski and M. Bowen, Adi methods for high order parabolic equations,, Appl. Num. Anal., 45 (2003), 331.   Google Scholar

[51]

T. P. Witelski, Equilibrium solutions of a degenerate singular Cahn-Hilliard equation,, Applied Mathematics Letters, 11 (1998), 127.  doi: 10.1016/S0893-9659(98)00092-5.  Google Scholar

[52]

L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations,, SIAM J. Numer. Anal., 37 (2000), 523.  doi: 10.1137/S0036142998335698.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[3]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[6]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[7]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[8]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[9]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[10]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[11]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[14]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[18]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[19]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[20]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]