\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Time-dependent attractor for the Oscillon equation

Abstract / Introduction Related Papers Cited by
  • We investigate the asymptotic behavior of the nonautonomous evolution problem generated by the Oscillon equation

    tt $u(x,t) +H $ t$ u(x,t) -\e^{-2Ht}$ xx $ u(x,t) + V'(u(x,t)) =0, \quad (x,t)\in (0,1) \times \R,$

    with periodic boundary conditions, where $H>0$ is the Hubble constant and $V$ is a nonlinear potential of arbitrary polynomial growth. After constructing a suitable dynamical framework to deal with the explicit time dependence of the energy of the solution, we establish the existence of a regular global attractor $\A=\A(t)$. The kernel sections $\A(t)$ have finite fractal dimension.

    Mathematics Subject Classification: Primary: 37L30, 35B41; Secondary: 83D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. B. Adib, M. Gleiser and C. A. S. Almeida, Long lived oscillons from asymmetric bubbles: Existence and stability, Phys. Rev. D, 66 (2002), 085011.doi: doi:10.1103/PhysRevD.66.085011.

    [2]

    L. Arnold, "Random Dynamical Systems," Springer-Verlag, Berlin, 1998.

    [3]

    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.

    [4]

    V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $\R^3$, Discrete Cont. Dynam. Syst., 7 (2001), 719-735.doi: doi:10.3934/dcds.2001.7.719.

    [5]

    Z. Brzeźniak, M. Capiński and F. Flandoli, Pathwise global attractors for stationary random dynamical systems, Probab. Theory Related Fields, 95 (1993), 87-102.doi: doi:10.1007/BF01197339.

    [6]

    T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for nonautonomous and random dynamical systems, Dynam. Contin. Discrete Impuls. Systems A, 10 (2003), 491-514.

    [7]

    T. Caraballo, J. A. Langa and J. Valero, The dimension of attractors of nonautonomous partial differential equations, ANZIAM J., 45 (2003), 207-222.doi: doi:10.1017/S1446181100013274.

    [8]

    T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.doi: doi:10.1016/j.na.2005.03.111.

    [9]

    T. Caraballo, G. Ł ukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 263-268.

    [10]

    D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dynam. Systems Theory, 2 (2002), 9-28.

    [11]

    V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.

    [12]

    V. V. Chepyzhov and M. I. Vishik, "Attractors of Equations of Mathematical Physics,'' American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002

    [13]

    E. J. Copeland, M. Gleiser and H. R. Muller, Oscillons: Resonant configurations during bubble collapse, Phys. Rev. D., 52 (1995), 1920-1933.doi: doi:10.1103/PhysRevD.52.1920.

    [14]

    H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.doi: doi:10.1007/BF02219225.

    [15]

    H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.doi: doi:10.1007/BF01193705.

    [16]

    P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Cont. Dyn. Systems, 10 (2004), 221-238.

    [17]

    E. Farhi, N. Graham, V. Khemani, et al., An oscillon in the $SU(2)$ gauged Higgs model, Phys. Rev. D, 72 (2005), 101701.doi: doi:10.1103/PhysRevD.72.101701.

    [18]

    S. Gatti, M. Grasselli, A. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127.doi: doi:10.1090/S0002-9939-05-08340-1.

    [19]

    J.-M. Ghidaglia and R. Temam, Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl., 66 (1987), 273-319.

    [20]

    M. Gleiser and A. Sornberger, Longlived localized field configurations in small lattices: Application to oscillons, Phys. Rev. E, 62 (2000), 1368-1374.doi: doi:10.1103/PhysRevE.62.1368.

    [21]

    J. K. Hale, "Asymptotic Behavior of Dissipative Systems,'' Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988.

    [22]

    A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications,'' Recherches en Mathmatiques Appliques [Research in Applied Mathematics], 17, Masson, Paris, 1991.

    [23]

    O. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,'' Cambridge University Press, Cambridge, UK, 1991.

    [24]

    B. B. Mandelbrot, "The Fractal Geometry of Nature,'' Schriftenreihe fr den Referenten. [Series for the Referee] W. H. Freeman and Co., San Francisco, Calif., 1982.

    [25]

    A. Miranville and S. Zelik, "Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,'' Handbook of Differential Equations: Evolutionary Equations, Vol. IV, 103-200, Elsevier/North-Holland, Amsterdam, 2008.

    [26]

    P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.doi: doi:10.1016/j.na.2009.02.065.

    [27]

    I. Moise, R. Rosa and X. Wang, Attractors for noncompact nonautonomous systems via energy equations, Discrete Cont. Dynam. Syst., 10 (2004), 473-496.doi: doi:10.3934/dcds.2004.10.473.

    [28]

    V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Comm. Pure Appl. Anal., 2 (2007), 481-486.

    [29]

    A. Riotto, Are oscillons present during a first order electroweak phase transition?, Phys. Lett. B, 365 (1996), 64-71.doi: doi:10.1016/0370-2693(95)01239-7.

    [30]

    B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics and Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, T. Riedrich and N. Koksch), Dresden, 73 (1992), 185-192.

    [31]

    M. Schroeder, "Fractals, Chaos, Power Laws,'' W. H. Freeman and Company, New York, 1991.

    [32]

    C. Sun, D. Cao and J. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.doi: doi:10.1088/0951-7715/19/11/008.

    [33]

    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,'' 2nd edition Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

    [34]

    P. B. Umbanhower, F. Melo and H. L. Swinney, Localized excitations in a vertically vibrated granular layer, Nature, 382 (1996), 793-796.doi: doi:10.1038/382793a0.

    [35]

    Y. Wang, Pullback attractors for nonautonomous wave equations with critical exponent, Nonlinear Anal., 68 (2008), 365-376.doi: doi:10.1016/j.na.2006.11.002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return