October  2011, 29(4): 1497-1516. doi: 10.3934/dcds.2011.29.1497

Subshifts of finite type which have completely positive entropy

1. 

Department of Mathematics, University of Washington, Seattle, WA 98195-4350, United States

Received  November 2009 Revised  July 2010 Published  December 2010

Domino tilings have been studied extensively for both their statistical properties [5], [12], [15] and their dynamical properties [3]. We construct a subshift of finite type using matching rules for several types of dominos. We combine the previous results about domino tilings to show that our subshift of finite type has a measure of maximal entropy with which the subshift has completely positive entropy but is not isomorphic to a Bernoulli shift.
Citation: Christopher Hoffman. Subshifts of finite type which have completely positive entropy. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1497-1516. doi: 10.3934/dcds.2011.29.1497
References:
[1]

R. Berger, The undecidability of the domino problem,, Memoirs Amer. Math. Soc., 66 (1966).   Google Scholar

[2]

H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zero-temperature triangular Ising antiferromagnet,, J. Phys. A, 15 (1982).  doi: 10.1088/0305-4470/15/11/011.  Google Scholar

[3]

R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances,, Ann. Probab., 21 (1993), 1329.  doi: 10.1214/aop/1176989121.  Google Scholar

[4]

R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type,, Ergodic Theory Dynam. Systems, 14 (1994), 213.  doi: 10.1017/S0143385700007859.  Google Scholar

[5]

H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings,, Journal Of The AMS, 14 (2001), 297.   Google Scholar

[6]

J. P. Conze, Entropie d'un groupe abélian de transformations1., Z Wasrscheinlichkeitstheorie Verw. Geiete, 25 (1972), 11.   Google Scholar

[7]

J. Feldman, New $K$-automorphisms and a problem of Kakutani,, Israel J. Math., 24 (1976), 16.  doi: 10.1007/BF02761426.  Google Scholar

[8]

N. A. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations,, Advances in Math., 5 (1970), 365.  doi: 10.1016/0001-8708(70)90010-1.  Google Scholar

[9]

C. Hoffman, A Markov random field which is $K$ but not Bernoulli,, Israel J. Math., 112 (1999), 249.  doi: 10.1007/BF02773484.  Google Scholar

[10]

F. den Hollander and J. Steif, On K-automorphisms, Bernoulli shifts and Markov random fields,, Ergodic Theory and Dynamical Systems, ().   Google Scholar

[11]

R. Kenyon, The Laplacian and Dirac operators on critical planar graphs,, Invent. Math., 150 (2002), 409.  doi: 10.1007/s00222-002-0249-4.  Google Scholar

[12]

R. Kenyon, Conformal invariance of domino tiling,, Ann. Probab., 28 (2000), 759.  doi: 10.1214/aop/1019160260.  Google Scholar

[13]

R. Kenyon, Local statistics of lattice dimers,, Ann. Inst. H. Poincaré, 33 (1997), 591.   Google Scholar

[14]

R. Kenyon, Dominos and the Gaussian free field,, Ann. Probab., 29 (2001), 1128.  doi: 10.1214/aop/1015345599.  Google Scholar

[15]

R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae,, Ann. of Math. (2), 163 (2006), 1019.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[16]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).   Google Scholar

[17]

D. Lind, B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).   Google Scholar

[18]

I. Meilijson, Mixing properties of a class of skew-products,, Israel J. Math., 19 (1974), 266.  doi: 10.1007/BF02757724.  Google Scholar

[19]

S. Sheffield, Uniqueness of maximal entropy measure on essential spanning forests,, Ann. Probab., 34 (2006), 857.  doi: 10.1214/009117905000000765.  Google Scholar

[20]

W. P. Thurston, Conway's tiling groups,, Amer. Math. Monthly, 97 (1990), 757.  doi: 10.2307/2324578.  Google Scholar

show all references

References:
[1]

R. Berger, The undecidability of the domino problem,, Memoirs Amer. Math. Soc., 66 (1966).   Google Scholar

[2]

H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zero-temperature triangular Ising antiferromagnet,, J. Phys. A, 15 (1982).  doi: 10.1088/0305-4470/15/11/011.  Google Scholar

[3]

R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances,, Ann. Probab., 21 (1993), 1329.  doi: 10.1214/aop/1176989121.  Google Scholar

[4]

R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type,, Ergodic Theory Dynam. Systems, 14 (1994), 213.  doi: 10.1017/S0143385700007859.  Google Scholar

[5]

H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings,, Journal Of The AMS, 14 (2001), 297.   Google Scholar

[6]

J. P. Conze, Entropie d'un groupe abélian de transformations1., Z Wasrscheinlichkeitstheorie Verw. Geiete, 25 (1972), 11.   Google Scholar

[7]

J. Feldman, New $K$-automorphisms and a problem of Kakutani,, Israel J. Math., 24 (1976), 16.  doi: 10.1007/BF02761426.  Google Scholar

[8]

N. A. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations,, Advances in Math., 5 (1970), 365.  doi: 10.1016/0001-8708(70)90010-1.  Google Scholar

[9]

C. Hoffman, A Markov random field which is $K$ but not Bernoulli,, Israel J. Math., 112 (1999), 249.  doi: 10.1007/BF02773484.  Google Scholar

[10]

F. den Hollander and J. Steif, On K-automorphisms, Bernoulli shifts and Markov random fields,, Ergodic Theory and Dynamical Systems, ().   Google Scholar

[11]

R. Kenyon, The Laplacian and Dirac operators on critical planar graphs,, Invent. Math., 150 (2002), 409.  doi: 10.1007/s00222-002-0249-4.  Google Scholar

[12]

R. Kenyon, Conformal invariance of domino tiling,, Ann. Probab., 28 (2000), 759.  doi: 10.1214/aop/1019160260.  Google Scholar

[13]

R. Kenyon, Local statistics of lattice dimers,, Ann. Inst. H. Poincaré, 33 (1997), 591.   Google Scholar

[14]

R. Kenyon, Dominos and the Gaussian free field,, Ann. Probab., 29 (2001), 1128.  doi: 10.1214/aop/1015345599.  Google Scholar

[15]

R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae,, Ann. of Math. (2), 163 (2006), 1019.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[16]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).   Google Scholar

[17]

D. Lind, B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).   Google Scholar

[18]

I. Meilijson, Mixing properties of a class of skew-products,, Israel J. Math., 19 (1974), 266.  doi: 10.1007/BF02757724.  Google Scholar

[19]

S. Sheffield, Uniqueness of maximal entropy measure on essential spanning forests,, Ann. Probab., 34 (2006), 857.  doi: 10.1214/009117905000000765.  Google Scholar

[20]

W. P. Thurston, Conway's tiling groups,, Amer. Math. Monthly, 97 (1990), 757.  doi: 10.2307/2324578.  Google Scholar

[1]

Silvère Gangloff, Benjamin Hellouin de Menibus. Effect of quantified irreducibility on the computability of subshift entropy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1975-2000. doi: 10.3934/dcds.2019083

[2]

Jeong-Yup Lee, Boris Solomyak. On substitution tilings and Delone sets without finite local complexity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3149-3177. doi: 10.3934/dcds.2019130

[3]

Ye Tian, Shucherng Fang, Zhibin Deng, Qingwei Jin. Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1041-1056. doi: 10.3934/jimo.2016.12.1041

[4]

Anwa Zhou, Jinyan Fan. A semidefinite relaxation algorithm for checking completely positive separable matrices. Journal of Industrial & Management Optimization, 2019, 15 (2) : 893-908. doi: 10.3934/jimo.2018076

[5]

Zhi-Bin Deng, Ye Tian, Cheng Lu, Wen-Xun Xing. Globally solving quadratic programs with convex objective and complementarity constraints via completely positive programming. Journal of Industrial & Management Optimization, 2018, 14 (2) : 625-636. doi: 10.3934/jimo.2017064

[6]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[7]

Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003

[8]

Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433

[9]

A. Crannell. A chaotic, non-mixing subshift. Conference Publications, 1998, 1998 (Special) : 195-202. doi: 10.3934/proc.1998.1998.195

[10]

Bing Li, Tuomas Sahlsten, Tony Samuel. Intermediate $\beta$-shifts of finite type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 323-344. doi: 10.3934/dcds.2016.36.323

[11]

Philipp Gohlke, Dan Rust, Timo Spindeler. Shifts of finite type and random substitutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5085-5103. doi: 10.3934/dcds.2019206

[12]

Ye Tian, Shu-Cherng Fang, Zhibin Deng, Wenxun Xing. Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming. Journal of Industrial & Management Optimization, 2013, 9 (3) : 703-721. doi: 10.3934/jimo.2013.9.703

[13]

Boris Kruglikov, Martin Rypdal. A piece-wise affine contracting map with positive entropy. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 393-394. doi: 10.3934/dcds.2006.16.393

[14]

Dino Festi, Alice Garbagnati, Bert Van Geemen, Ronald Van Luijk. The Cayley-Oguiso automorphism of positive entropy on a K3 surface. Journal of Modern Dynamics, 2013, 7 (1) : 75-97. doi: 10.3934/jmd.2013.7.75

[15]

Ming-Chia Li, Ming-Jiea Lyu. Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 243-252. doi: 10.3934/dcds.2011.30.243

[16]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[17]

Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721

[18]

Kevin McGoff, Ronnie Pavlov. Random $\mathbb{Z}^d$-shifts of finite type. Journal of Modern Dynamics, 2016, 10: 287-330. doi: 10.3934/jmd.2016.10.287

[19]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[20]

Jeong-Yup Lee, Boris Solomyak. Pisot family self-affine tilings, discrete spectrum, and the Meyer property. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 935-959. doi: 10.3934/dcds.2012.32.935

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]