October  2011, 29(4): 1497-1516. doi: 10.3934/dcds.2011.29.1497

Subshifts of finite type which have completely positive entropy

1. 

Department of Mathematics, University of Washington, Seattle, WA 98195-4350, United States

Received  November 2009 Revised  July 2010 Published  December 2010

Domino tilings have been studied extensively for both their statistical properties [5], [12], [15] and their dynamical properties [3]. We construct a subshift of finite type using matching rules for several types of dominos. We combine the previous results about domino tilings to show that our subshift of finite type has a measure of maximal entropy with which the subshift has completely positive entropy but is not isomorphic to a Bernoulli shift.
Citation: Christopher Hoffman. Subshifts of finite type which have completely positive entropy. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1497-1516. doi: 10.3934/dcds.2011.29.1497
References:
[1]

R. Berger, The undecidability of the domino problem,, Memoirs Amer. Math. Soc., 66 (1966).   Google Scholar

[2]

H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zero-temperature triangular Ising antiferromagnet,, J. Phys. A, 15 (1982).  doi: 10.1088/0305-4470/15/11/011.  Google Scholar

[3]

R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances,, Ann. Probab., 21 (1993), 1329.  doi: 10.1214/aop/1176989121.  Google Scholar

[4]

R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type,, Ergodic Theory Dynam. Systems, 14 (1994), 213.  doi: 10.1017/S0143385700007859.  Google Scholar

[5]

H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings,, Journal Of The AMS, 14 (2001), 297.   Google Scholar

[6]

J. P. Conze, Entropie d'un groupe abélian de transformations1., Z Wasrscheinlichkeitstheorie Verw. Geiete, 25 (1972), 11.   Google Scholar

[7]

J. Feldman, New $K$-automorphisms and a problem of Kakutani,, Israel J. Math., 24 (1976), 16.  doi: 10.1007/BF02761426.  Google Scholar

[8]

N. A. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations,, Advances in Math., 5 (1970), 365.  doi: 10.1016/0001-8708(70)90010-1.  Google Scholar

[9]

C. Hoffman, A Markov random field which is $K$ but not Bernoulli,, Israel J. Math., 112 (1999), 249.  doi: 10.1007/BF02773484.  Google Scholar

[10]

F. den Hollander and J. Steif, On K-automorphisms, Bernoulli shifts and Markov random fields,, Ergodic Theory and Dynamical Systems, ().   Google Scholar

[11]

R. Kenyon, The Laplacian and Dirac operators on critical planar graphs,, Invent. Math., 150 (2002), 409.  doi: 10.1007/s00222-002-0249-4.  Google Scholar

[12]

R. Kenyon, Conformal invariance of domino tiling,, Ann. Probab., 28 (2000), 759.  doi: 10.1214/aop/1019160260.  Google Scholar

[13]

R. Kenyon, Local statistics of lattice dimers,, Ann. Inst. H. Poincaré, 33 (1997), 591.   Google Scholar

[14]

R. Kenyon, Dominos and the Gaussian free field,, Ann. Probab., 29 (2001), 1128.  doi: 10.1214/aop/1015345599.  Google Scholar

[15]

R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae,, Ann. of Math. (2), 163 (2006), 1019.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[16]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).   Google Scholar

[17]

D. Lind, B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).   Google Scholar

[18]

I. Meilijson, Mixing properties of a class of skew-products,, Israel J. Math., 19 (1974), 266.  doi: 10.1007/BF02757724.  Google Scholar

[19]

S. Sheffield, Uniqueness of maximal entropy measure on essential spanning forests,, Ann. Probab., 34 (2006), 857.  doi: 10.1214/009117905000000765.  Google Scholar

[20]

W. P. Thurston, Conway's tiling groups,, Amer. Math. Monthly, 97 (1990), 757.  doi: 10.2307/2324578.  Google Scholar

show all references

References:
[1]

R. Berger, The undecidability of the domino problem,, Memoirs Amer. Math. Soc., 66 (1966).   Google Scholar

[2]

H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zero-temperature triangular Ising antiferromagnet,, J. Phys. A, 15 (1982).  doi: 10.1088/0305-4470/15/11/011.  Google Scholar

[3]

R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances,, Ann. Probab., 21 (1993), 1329.  doi: 10.1214/aop/1176989121.  Google Scholar

[4]

R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type,, Ergodic Theory Dynam. Systems, 14 (1994), 213.  doi: 10.1017/S0143385700007859.  Google Scholar

[5]

H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings,, Journal Of The AMS, 14 (2001), 297.   Google Scholar

[6]

J. P. Conze, Entropie d'un groupe abélian de transformations1., Z Wasrscheinlichkeitstheorie Verw. Geiete, 25 (1972), 11.   Google Scholar

[7]

J. Feldman, New $K$-automorphisms and a problem of Kakutani,, Israel J. Math., 24 (1976), 16.  doi: 10.1007/BF02761426.  Google Scholar

[8]

N. A. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations,, Advances in Math., 5 (1970), 365.  doi: 10.1016/0001-8708(70)90010-1.  Google Scholar

[9]

C. Hoffman, A Markov random field which is $K$ but not Bernoulli,, Israel J. Math., 112 (1999), 249.  doi: 10.1007/BF02773484.  Google Scholar

[10]

F. den Hollander and J. Steif, On K-automorphisms, Bernoulli shifts and Markov random fields,, Ergodic Theory and Dynamical Systems, ().   Google Scholar

[11]

R. Kenyon, The Laplacian and Dirac operators on critical planar graphs,, Invent. Math., 150 (2002), 409.  doi: 10.1007/s00222-002-0249-4.  Google Scholar

[12]

R. Kenyon, Conformal invariance of domino tiling,, Ann. Probab., 28 (2000), 759.  doi: 10.1214/aop/1019160260.  Google Scholar

[13]

R. Kenyon, Local statistics of lattice dimers,, Ann. Inst. H. Poincaré, 33 (1997), 591.   Google Scholar

[14]

R. Kenyon, Dominos and the Gaussian free field,, Ann. Probab., 29 (2001), 1128.  doi: 10.1214/aop/1015345599.  Google Scholar

[15]

R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae,, Ann. of Math. (2), 163 (2006), 1019.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[16]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).   Google Scholar

[17]

D. Lind, B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).   Google Scholar

[18]

I. Meilijson, Mixing properties of a class of skew-products,, Israel J. Math., 19 (1974), 266.  doi: 10.1007/BF02757724.  Google Scholar

[19]

S. Sheffield, Uniqueness of maximal entropy measure on essential spanning forests,, Ann. Probab., 34 (2006), 857.  doi: 10.1214/009117905000000765.  Google Scholar

[20]

W. P. Thurston, Conway's tiling groups,, Amer. Math. Monthly, 97 (1990), 757.  doi: 10.2307/2324578.  Google Scholar

[1]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[9]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[12]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[13]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]