October  2011, 29(4): 1637-1649. doi: 10.3934/dcds.2011.29.1637

Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation

1. 

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

2. 

Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4, Canada, Canada

Received  December 2009 Revised  September 2010 Published  December 2010

In a recent paper [4], we showed that the phenomenon of resonant tunneling, well known in linear quantum mechanical scattering theory, takes place for fast solitons of the Nonlinear Schrödinger (NLS) equation in the presence of certain large potentials. Here, we illustrate numerically this situation for the one dimensional cubic NLS equation with two classes of potentials, namely the 'box' potential and a repulsive 2-delta potential. In particular, under the resonant condition, we show that the transmitted wave is close to a soliton, calculate the transmitted mass of the solution and show that it converges to the total mass of the solution as the velocity of the soliton is increased.
Citation: Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637
References:
[1]

W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2837429.  Google Scholar

[2]

W. K. Abou Salem, Effective dynamics of solitons in the presence of rough nonlinear perturbations,, Nonlinearity, 22 (2009), 747.  doi: 10.1088/0951-7715/22/4/004.  Google Scholar

[3]

W. K. Abou Salem, J. Fröhlich and I. M. Sigal, Colliding solitons for the nonlinear Schrödinger equation,, Commun. Math. Phys., 291 (2009), 151.  doi: 10.1007/s00220-009-0871-8.  Google Scholar

[4]

W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers,, to appear in Canad. J. Math., (2010).   Google Scholar

[5]

G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numerische Mathematik, 59 (1991), 31.  doi: 10.1007/BF01385769.  Google Scholar

[6]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation,, SIAM J. Sci. Comput., 25 (2003), 186.  doi: 10.1137/S1064827597332041.  Google Scholar

[7]

J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential,, Math. Res. Lett., 7 (2000), 329.   Google Scholar

[8]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Commun. Math. Phys., 250 (2004), 613.  doi: 10.1007/s00220-004-1128-1.  Google Scholar

[9]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities,, J. Modern Dynamics, 1 (2007), 689.   Google Scholar

[10]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials,, IMRN, (2008).   Google Scholar

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Commun. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, Journal of Nonlinear Science, 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

show all references

References:
[1]

W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2837429.  Google Scholar

[2]

W. K. Abou Salem, Effective dynamics of solitons in the presence of rough nonlinear perturbations,, Nonlinearity, 22 (2009), 747.  doi: 10.1088/0951-7715/22/4/004.  Google Scholar

[3]

W. K. Abou Salem, J. Fröhlich and I. M. Sigal, Colliding solitons for the nonlinear Schrödinger equation,, Commun. Math. Phys., 291 (2009), 151.  doi: 10.1007/s00220-009-0871-8.  Google Scholar

[4]

W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers,, to appear in Canad. J. Math., (2010).   Google Scholar

[5]

G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numerische Mathematik, 59 (1991), 31.  doi: 10.1007/BF01385769.  Google Scholar

[6]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation,, SIAM J. Sci. Comput., 25 (2003), 186.  doi: 10.1137/S1064827597332041.  Google Scholar

[7]

J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential,, Math. Res. Lett., 7 (2000), 329.   Google Scholar

[8]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Commun. Math. Phys., 250 (2004), 613.  doi: 10.1007/s00220-004-1128-1.  Google Scholar

[9]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities,, J. Modern Dynamics, 1 (2007), 689.   Google Scholar

[10]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials,, IMRN, (2008).   Google Scholar

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Commun. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, Journal of Nonlinear Science, 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[4]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[20]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]