October  2011, 29(4): 1637-1649. doi: 10.3934/dcds.2011.29.1637

Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation

1. 

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

2. 

Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4, Canada, Canada

Received  December 2009 Revised  September 2010 Published  December 2010

In a recent paper [4], we showed that the phenomenon of resonant tunneling, well known in linear quantum mechanical scattering theory, takes place for fast solitons of the Nonlinear Schrödinger (NLS) equation in the presence of certain large potentials. Here, we illustrate numerically this situation for the one dimensional cubic NLS equation with two classes of potentials, namely the 'box' potential and a repulsive 2-delta potential. In particular, under the resonant condition, we show that the transmitted wave is close to a soliton, calculate the transmitted mass of the solution and show that it converges to the total mass of the solution as the velocity of the soliton is increased.
Citation: Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637
References:
[1]

W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2837429.  Google Scholar

[2]

W. K. Abou Salem, Effective dynamics of solitons in the presence of rough nonlinear perturbations,, Nonlinearity, 22 (2009), 747.  doi: 10.1088/0951-7715/22/4/004.  Google Scholar

[3]

W. K. Abou Salem, J. Fröhlich and I. M. Sigal, Colliding solitons for the nonlinear Schrödinger equation,, Commun. Math. Phys., 291 (2009), 151.  doi: 10.1007/s00220-009-0871-8.  Google Scholar

[4]

W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers,, to appear in Canad. J. Math., (2010).   Google Scholar

[5]

G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numerische Mathematik, 59 (1991), 31.  doi: 10.1007/BF01385769.  Google Scholar

[6]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation,, SIAM J. Sci. Comput., 25 (2003), 186.  doi: 10.1137/S1064827597332041.  Google Scholar

[7]

J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential,, Math. Res. Lett., 7 (2000), 329.   Google Scholar

[8]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Commun. Math. Phys., 250 (2004), 613.  doi: 10.1007/s00220-004-1128-1.  Google Scholar

[9]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities,, J. Modern Dynamics, 1 (2007), 689.   Google Scholar

[10]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials,, IMRN, (2008).   Google Scholar

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Commun. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, Journal of Nonlinear Science, 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

show all references

References:
[1]

W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2837429.  Google Scholar

[2]

W. K. Abou Salem, Effective dynamics of solitons in the presence of rough nonlinear perturbations,, Nonlinearity, 22 (2009), 747.  doi: 10.1088/0951-7715/22/4/004.  Google Scholar

[3]

W. K. Abou Salem, J. Fröhlich and I. M. Sigal, Colliding solitons for the nonlinear Schrödinger equation,, Commun. Math. Phys., 291 (2009), 151.  doi: 10.1007/s00220-009-0871-8.  Google Scholar

[4]

W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers,, to appear in Canad. J. Math., (2010).   Google Scholar

[5]

G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numerische Mathematik, 59 (1991), 31.  doi: 10.1007/BF01385769.  Google Scholar

[6]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation,, SIAM J. Sci. Comput., 25 (2003), 186.  doi: 10.1137/S1064827597332041.  Google Scholar

[7]

J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential,, Math. Res. Lett., 7 (2000), 329.   Google Scholar

[8]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Commun. Math. Phys., 250 (2004), 613.  doi: 10.1007/s00220-004-1128-1.  Google Scholar

[9]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities,, J. Modern Dynamics, 1 (2007), 689.   Google Scholar

[10]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials,, IMRN, (2008).   Google Scholar

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Commun. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, Journal of Nonlinear Science, 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

[1]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[2]

Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225

[3]

Liren Lin, Tai-Peng Tsai. Mixed dimensional infinite soliton trains for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 295-336. doi: 10.3934/dcds.2017013

[4]

J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665

[5]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[6]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[7]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[8]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[9]

Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic & Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215

[10]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[11]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[12]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[13]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[14]

W. Josh Sonnier, C. I. Christov. Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation. Conference Publications, 2009, 2009 (Special) : 708-718. doi: 10.3934/proc.2009.2009.708

[15]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[16]

Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205

[17]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[18]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[19]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[20]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]