October  2011, 29(4): 1637-1649. doi: 10.3934/dcds.2011.29.1637

Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation

1. 

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

2. 

Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4, Canada, Canada

Received  December 2009 Revised  September 2010 Published  December 2010

In a recent paper [4], we showed that the phenomenon of resonant tunneling, well known in linear quantum mechanical scattering theory, takes place for fast solitons of the Nonlinear Schrödinger (NLS) equation in the presence of certain large potentials. Here, we illustrate numerically this situation for the one dimensional cubic NLS equation with two classes of potentials, namely the 'box' potential and a repulsive 2-delta potential. In particular, under the resonant condition, we show that the transmitted wave is close to a soliton, calculate the transmitted mass of the solution and show that it converges to the total mass of the solution as the velocity of the soliton is increased.
Citation: Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637
References:
[1]

W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials, J. Math. Phys., 49 (2008), 032101. doi: 10.1063/1.2837429.

[2]

W. K. Abou Salem, Effective dynamics of solitons in the presence of rough nonlinear perturbations, Nonlinearity, 22 (2009), 747-763. doi: 10.1088/0951-7715/22/4/004.

[3]

W. K. Abou Salem, J. Fröhlich and I. M. Sigal, Colliding solitons for the nonlinear Schrödinger equation, Commun. Math. Phys., 291 (2009), 151-176. doi: 10.1007/s00220-009-0871-8.

[4]

W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers, to appear in Canad. J. Math., (2010).

[5]

G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numerische Mathematik, 59 (1991), 31-53. doi: 10.1007/BF01385769.

[6]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation, SIAM J. Sci. Comput., 25 (2003), 186-212. doi: 10.1137/S1064827597332041.

[7]

J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential, Math. Res. Lett., 7 (2000), 329-342.

[8]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Commun. Math. Phys., 250 (2004), 613-642. doi: 10.1007/s00220-004-1128-1.

[9]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities, J. Modern Dynamics, 1 (2007), 689-718.

[10]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials, IMRN, (2008), ArtID 026, 36pp.

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Commun. Math. Phys., 274 (2007), 187-216. doi: 10.1007/s00220-007-0261-z.

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials, Journal of Nonlinear Science, 17 (2007), 349-367. doi: 10.1007/s00332-006-0807-9.

show all references

References:
[1]

W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials, J. Math. Phys., 49 (2008), 032101. doi: 10.1063/1.2837429.

[2]

W. K. Abou Salem, Effective dynamics of solitons in the presence of rough nonlinear perturbations, Nonlinearity, 22 (2009), 747-763. doi: 10.1088/0951-7715/22/4/004.

[3]

W. K. Abou Salem, J. Fröhlich and I. M. Sigal, Colliding solitons for the nonlinear Schrödinger equation, Commun. Math. Phys., 291 (2009), 151-176. doi: 10.1007/s00220-009-0871-8.

[4]

W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers, to appear in Canad. J. Math., (2010).

[5]

G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numerische Mathematik, 59 (1991), 31-53. doi: 10.1007/BF01385769.

[6]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation, SIAM J. Sci. Comput., 25 (2003), 186-212. doi: 10.1137/S1064827597332041.

[7]

J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential, Math. Res. Lett., 7 (2000), 329-342.

[8]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Commun. Math. Phys., 250 (2004), 613-642. doi: 10.1007/s00220-004-1128-1.

[9]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities, J. Modern Dynamics, 1 (2007), 689-718.

[10]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials, IMRN, (2008), ArtID 026, 36pp.

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Commun. Math. Phys., 274 (2007), 187-216. doi: 10.1007/s00220-007-0261-z.

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials, Journal of Nonlinear Science, 17 (2007), 349-367. doi: 10.1007/s00332-006-0807-9.

[1]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[2]

Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225

[3]

Edès Destyl, Jacques Laminie, Paul Nuiro, Pascal Poullet. Numerical simulations of parity–time symmetric nonlinear Schrödinger equations in critical case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2805-2821. doi: 10.3934/dcdss.2020411

[4]

Liren Lin, Tai-Peng Tsai. Mixed dimensional infinite soliton trains for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 295-336. doi: 10.3934/dcds.2017013

[5]

J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665

[6]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[7]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure and Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[8]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[9]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[10]

Xiaobing Feng, Shu Ma. Stable numerical methods for a stochastic nonlinear Schrödinger equation with linear multiplicative noise. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 687-711. doi: 10.3934/dcdss.2021071

[11]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[12]

Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic and Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215

[13]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[14]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[15]

Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations and Control Theory, 2020, 9 (3) : 721-732. doi: 10.3934/eect.2020030

[16]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[17]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[18]

Hongwei Wang, Amin Esfahani. On the Cauchy problem for a nonlocal nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022039

[19]

W. Josh Sonnier, C. I. Christov. Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation. Conference Publications, 2009, 2009 (Special) : 708-718. doi: 10.3934/proc.2009.2009.708

[20]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]