Citation: |
[1] |
A. Ambrosetti and V. Coti Zelati, "Periodic Solutions of Singular Lagrangian Systems, Progress in Nonlinear Differential Equations and their Applications," Birkhäuser Boston, Inc., Boston, MA, 1993. |
[2] |
J.C. Alexander, A primer on connectivity, Fixed point theory (Sherbrooke, Que., 1980), pp. 455-483, Lecture Notes in Math. 886, Springer, Berlin-New York, 1981. |
[3] |
V. I. Arnold, "Mathematical Methods of Classical Mechanics," 2nd edition, Graduate Texts in Mathematics 60, Springer, New York, Heidelberg, 1978. |
[4] |
E. N. Dancer, On the use of asymptotics in nonlinear boundary value problems, Ann. Mat. Pura Appl. (4), 131 (1982), 167-185.doi: doi:10.1007/BF01765151. |
[5] |
K. Deimling, "Nonlinear Functional Analysis," Springer-Verlag, Berlin Heidelberg, 1985, |
[6] |
A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach, J. Differential Equations, 244 (2008), 3235-3264.doi: doi:10.1016/j.jde.2007.11.005. |
[7] |
P. Habets and L. Sanchez, Periodic solutions of dissipative dynamical systems with singular potentials, Differential Integral Equations, 3 (1990), 1139-1149. |
[8] |
J. Leray and J. Schauder, Topologie et équations fonctionnelles (French), Ann. Sci. École Norm. Sup. (3), 51 (1934), 45-78. |
[9] |
J. Mawhin, Leray-Schauder continuation theorems in the absence of a priori bounds, Topol. Methods Nonlinear Anal., 9 (1997), 179-200. |
[10] |
J. Mawhin, C. Rebelo and F. Zanolin, Continuation theorems for Ambrosetti-Prodi type periodic problems, Communications in Contemporary Mathematics, 2 (2000), 87-126. |
[11] |
W. Magnus and S. Winkler, "Hill's Equation," Dover Publ., Dover, 1979. |
[12] |
I. Newton, "Principes Mathématiques de la Philosophie Naturelle," 2nd section, Livre Premier, Paris, 1759. |