\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of solutions for a Boussinesq system on the half line and on a finite interval

Abstract Related Papers Cited by
  • The initial boundary-value problem for a Boussinesq system is studied on the half line and on a finite interval. Global existence of weak solutions satisfying the boundary conditions is proven and uniqueness for solutions in a suitable class is studied. A proof of the persistence of finite regularity for solutions in the whole space is also presented.
    Mathematics Subject Classification: 35A01, 35F61, 35Q35, 35B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. J. Amick, Regularity and uniqueness of solutions to the boussinesq system of equations, J. Diff. Eq., 54 (1984), 231-247.

    [2]

    T. B. Benjamin, "Lectures on Nonlinear Wave Motion," Lectures in Applied Mathematics, Vol. 15, Amer. Math. Soc., Providence, R.I., 1974.

    [3]

    J. Bona and R. Smith, A model for the two-way propagation of water waves in a channel, Math. Proc. Cambridge Philos., Soc., 79 (1976), 167-182.doi: doi:10.1017/S030500410005218X.

    [4]

    J. Bona and V. Dougalis, An initial and boundary-value problem for a model equation for propagation of long waves, J. Math. Anal Appl., 75 (1980), 503-522.doi: doi:10.1016/0022-247X(80)90098-0.

    [5]

    J. Bona, M. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.doi: doi:10.1007/s00332-002-0466-4.

    [6]

    J. Bona, M. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media II: The nonlinear theory, Nonlinearity, 17 (2004), 925-952.doi: doi:10.1088/0951-7715/17/3/010.

    [7]

    J. R. Cannon, "The One-dimensional Heat Equation," Encyclopedia of Mathematics and its Applications, 23, 1984.

    [8]

    N. Dunford and J. Schwartz, "Linear Operators. Part I," Pure and Applied Mathematics, Vol. VII, Interscience Publishers, New York, 1988.

    [9]

    A. S. Fokas and B. Pelloni, Boundary value problems for Boussinesq type systems, Math. Phys., Anal. Geom., 8 (2005), 59-96.doi: doi:10.1007/s11040-004-1650-6.

    [10]

    A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice Hall, Englewood Cliffs, N.J. 1964.

    [11]

    P. D. Lax, "Shock Waves and Entropy," in Contributions to Non-Linear Functionnal Analysis, Academic Press, 1971.

    [12]

    M. M. Rao and Z. D. Ren, "Theory of Orlicz Spaces," Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., New York, 1991.

    [13]

    W. Rudin, "Functionnal Analysis," McGraw-Hill, New York, 1973.

    [14]

    M. E. Schonbek, Existence of solutions for the Boussinesq system of equations, J. Differential Equations, 42 (1981), 325-352.doi: doi:10.1016/0022-0396(81)90108-X.

    [15]

    G. B. Whitham, "Linear and Nonlinear Waves," Pure and Applied Mathematics, Wiley-Interscience, New-York-London-Sydney, 1974.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return