Citation: |
[1] |
B. Lods, On linear kinetic equations involving unbounded cross-sections, Math. Meth. Appl. Sci., 27 (2004), 1049-1075.doi: doi:10.1002/mma.485. |
[2] |
B. Lods, Semigroup generation properties of streaming operators with noncontractive boundary conditions, Mathematical and Computer Modelling, 42 (2005), 1441-1462.doi: doi:10.1016/j.mcm.2004.12.007. |
[3] |
B. Lods and M. Sbihi, Stability of the essential spectrum for $2D$-transport models with Maxwell boundary conditions, Math. Meth. Appl. Sci., 29 (2006), 499-523.doi: doi:10.1002/mma.684. |
[4] |
J. L. Lebowitz and S. I. Rubinow, A theory for the age and generation time distribution of a microbial population, J. Math. Biol., 1 (1974), 17-36.doi: doi:10.1007/BF02339486. |
[5] |
J. Voigt, A perturbation theorem for the essential spectral radius of strongly continuous semigroups, Mh. Math., 90 (1980), 153-161.doi: doi:10.1007/BF01303264. |
[6] |
J. Voigt, Spectral properties of the neutron transport equation, J. Math. Anal. Appl., 106 (1985), 140-153.doi: doi:10.1016/0022-247X(85)90137-4. |
[7] |
K. Latrach and A. Zeghal, Existence results for a boundary value problem arising in growing cell populations, Math. Models Meth. Appl. Sci., 13 (2003), 1-17.doi: doi:10.1142/S0218202503002350. |
[8] |
K. Latrach and B. Lods, Regularity and time asymptotic behaviour of solutions to transport equations, Transp. Theory Stat. Phys., 30 (2001), 617-639.doi: doi:10.1081/TT-100107419. |
[9] |
K. Latrach and H. Megdiche, Spectral properties and regularity of solutions to transport equations in slab geometry, Math. Models Appl. Sci., 29 (2006), 2089-2121. |
[10] |
K. Latrach, H. Megdiche and M. A. Taoudi, Compactness properties for perturbed semigroups in Banach spaces and application to a transport model, J. Math. Anal. Appl., 359 (2009), 88-94.doi: doi:10.1016/j.jmaa.2009.05.027. |
[11] |
L. W. Weis, A generalization of the Vidav-Jörgens perturbation theorem for semigroups and its application to transport theory, J. Math. Anal. Appl., 129 (1988), 6-23.doi: doi:10.1016/0022-247X(88)90230-2. |
[12] |
L. W. Weis, The stability of positive semigroups on $L_p$ spaces, Proc. AMS, 123 (1995), 3089-3094. |
[13] |
M. Mokhtar-Kharroubi, On $L^1$-spectral theory of neutron transport, J. Diff. Int. Equ., 18 (2005), 1221-1242. |
[14] |
M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199.doi: doi:10.1016/0022-5193(83)90024-3. |
[15] |
M. Sbihi, A resolvent approach to the stability of essential and critical spectra of perturbed $C_0$-semigroups on Hilbert spaces with applications to transport theory, J. Evol. Equ., 7 (2007), 35-58.doi: doi:10.1007/s00028-006-0226-2. |
[16] |
P. Dodds and J. Fremlin, Compact operator in Banach lattices, Isr. J. Math., 34 (1979), 287-320.doi: doi:10.1007/BF02760610. |
[17] |
H. Hille and R. E. Phillips, "Functional Analysis and Semigroups," Vol. 31, Amer. Math. Soc. Colloq., Providence, 1957. |
[18] |
N. Dunford and J. T. Schwartz, "Linear Operators: Part I," Intersciences, 1958. |
[19] |
R. Nagel (ed.), "One-Parameter Semigroups of Positive Operators," Lect. Notes Math., 1184, Springer Verlag, 1986. |
[20] |
T. Kato, "Perturbation Theory for Linear Operators," Springer, 1966. |
[21] |
W. Greenberg, C. Van der Mee and V. Protopopescu, "Boundary Value Problems in Abstract Kinetic Theory," Birkhäuser, Basel, 1987. |