\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions

Abstract / Introduction Related Papers Cited by
  • In this paper we discuss the large time behavior of the solution to the Cauchy problem governed by a transport equation with Maxwell boundary conditions arising in growing cell population in $L^1$-spaces. Our result completes previous ones established in [3] in $L^p$-spaces with $1 < p < \infty$.
    Mathematics Subject Classification: 47G20, 47D06, 47A55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Lods, On linear kinetic equations involving unbounded cross-sections, Math. Meth. Appl. Sci., 27 (2004), 1049-1075.doi: doi:10.1002/mma.485.

    [2]

    B. Lods, Semigroup generation properties of streaming operators with noncontractive boundary conditions, Mathematical and Computer Modelling, 42 (2005), 1441-1462.doi: doi:10.1016/j.mcm.2004.12.007.

    [3]

    B. Lods and M. Sbihi, Stability of the essential spectrum for $2D$-transport models with Maxwell boundary conditions, Math. Meth. Appl. Sci., 29 (2006), 499-523.doi: doi:10.1002/mma.684.

    [4]

    J. L. Lebowitz and S. I. Rubinow, A theory for the age and generation time distribution of a microbial population, J. Math. Biol., 1 (1974), 17-36.doi: doi:10.1007/BF02339486.

    [5]

    J. Voigt, A perturbation theorem for the essential spectral radius of strongly continuous semigroups, Mh. Math., 90 (1980), 153-161.doi: doi:10.1007/BF01303264.

    [6]

    J. Voigt, Spectral properties of the neutron transport equation, J. Math. Anal. Appl., 106 (1985), 140-153.doi: doi:10.1016/0022-247X(85)90137-4.

    [7]

    K. Latrach and A. Zeghal, Existence results for a boundary value problem arising in growing cell populations, Math. Models Meth. Appl. Sci., 13 (2003), 1-17.doi: doi:10.1142/S0218202503002350.

    [8]

    K. Latrach and B. Lods, Regularity and time asymptotic behaviour of solutions to transport equations, Transp. Theory Stat. Phys., 30 (2001), 617-639.doi: doi:10.1081/TT-100107419.

    [9]

    K. Latrach and H. Megdiche, Spectral properties and regularity of solutions to transport equations in slab geometry, Math. Models Appl. Sci., 29 (2006), 2089-2121.

    [10]

    K. Latrach, H. Megdiche and M. A. Taoudi, Compactness properties for perturbed semigroups in Banach spaces and application to a transport model, J. Math. Anal. Appl., 359 (2009), 88-94.doi: doi:10.1016/j.jmaa.2009.05.027.

    [11]

    L. W. Weis, A generalization of the Vidav-Jörgens perturbation theorem for semigroups and its application to transport theory, J. Math. Anal. Appl., 129 (1988), 6-23.doi: doi:10.1016/0022-247X(88)90230-2.

    [12]

    L. W. Weis, The stability of positive semigroups on $L_p$ spaces, Proc. AMS, 123 (1995), 3089-3094.

    [13]

    M. Mokhtar-Kharroubi, On $L^1$-spectral theory of neutron transport, J. Diff. Int. Equ., 18 (2005), 1221-1242.

    [14]

    M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199.doi: doi:10.1016/0022-5193(83)90024-3.

    [15]

    M. Sbihi, A resolvent approach to the stability of essential and critical spectra of perturbed $C_0$-semigroups on Hilbert spaces with applications to transport theory, J. Evol. Equ., 7 (2007), 35-58.doi: doi:10.1007/s00028-006-0226-2.

    [16]

    P. Dodds and J. Fremlin, Compact operator in Banach lattices, Isr. J. Math., 34 (1979), 287-320.doi: doi:10.1007/BF02760610.

    [17]

    H. Hille and R. E. Phillips, "Functional Analysis and Semigroups," Vol. 31, Amer. Math. Soc. Colloq., Providence, 1957.

    [18]

    N. Dunford and J. T. Schwartz, "Linear Operators: Part I," Intersciences, 1958.

    [19]

    R. Nagel (ed.), "One-Parameter Semigroups of Positive Operators," Lect. Notes Math., 1184, Springer Verlag, 1986.

    [20]

    T. Kato, "Perturbation Theory for Linear Operators," Springer, 1966.

    [21]

    W. Greenberg, C. Van der Mee and V. Protopopescu, "Boundary Value Problems in Abstract Kinetic Theory," Birkhäuser, Basel, 1987.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return