• Previous Article
    Global dissipativity and inertial manifolds for diffusive burgers equations with low-wavenumber instability
  • DCDS Home
  • This Issue
  • Next Article
    Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions
January  2011, 29(1): 323-326. doi: 10.3934/dcds.2011.29.323

An approximation theorem for maps between tiling spaces

1. 

Department of Mathematics, Texas Lutheran University, Seguin, TX 78155, United States

2. 

Department of Mathematics, The University of Texas at Austin, Austin, TX 78712

Received  August 2009 Revised  May 2010 Published  September 2010

We show that every continuous map from one translationally finite tiling space to another can be approximated by a local map. If two local maps are homotopic, then the homotopy can be chosen so that every interpolating map is also local.
Citation: Betseygail Rand, Lorenzo Sadun. An approximation theorem for maps between tiling spaces. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 323-326. doi: 10.3934/dcds.2011.29.323
References:
[1]

M. Barge, B. Diamond, J. Hunton and L. Sadun, Cohomology of substitution tiling spaces,, preprint, ().   Google Scholar

[2]

J. Kellondonk, Pattern-equivariant functions and cohomology,, J. Phys. A, 36 (2003), 1.   Google Scholar

[3]

J. Kellendonk and I. Putnam, The Ruelle-Sullivan map for $\R^n$ actions,, Math. Ann., 344 (2006), 693.  doi: doi:10.1007/s00208-005-0728-1.  Google Scholar

[4]

D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).  doi: doi:10.1017/CBO9780511626302.  Google Scholar

[5]

K. Petersen, Factor maps between tiling dynamical systems,, Forum Math., 11 (1999), 503.  doi: doi:10.1515/form.1999.011.  Google Scholar

[6]

N. Priebe, Towards a characterization of self-similar tilings via derived Voronoi tesselations,, Geometriae Dedicata, 79 (2000), 239.  doi: doi:10.1023/A:1005191014127.  Google Scholar

[7]

C. Radin, The pinwheel tilings of the plane,, Annals of Math., 139 (1994), 661.  doi: doi:10.2307/2118575.  Google Scholar

[8]

B. Rand, "Pattern-Equivariant Cohomology of Tiling Spaces With Rotations,", Ph.D. thesis in Mathematics, (2006).   Google Scholar

[9]

C. Radin and L. Sadun, Isomorphisms of hierarchical structures,, Ergodic Theory and Dynamical Systems, 21 (2001), 1239.  doi: doi:10.1017/S0143385701001572.  Google Scholar

[10]

L. Sadun, "Topology of Tiling Spaces,", University Lecture Series of the American Mathematical Society, 46 (2008).   Google Scholar

show all references

References:
[1]

M. Barge, B. Diamond, J. Hunton and L. Sadun, Cohomology of substitution tiling spaces,, preprint, ().   Google Scholar

[2]

J. Kellondonk, Pattern-equivariant functions and cohomology,, J. Phys. A, 36 (2003), 1.   Google Scholar

[3]

J. Kellendonk and I. Putnam, The Ruelle-Sullivan map for $\R^n$ actions,, Math. Ann., 344 (2006), 693.  doi: doi:10.1007/s00208-005-0728-1.  Google Scholar

[4]

D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).  doi: doi:10.1017/CBO9780511626302.  Google Scholar

[5]

K. Petersen, Factor maps between tiling dynamical systems,, Forum Math., 11 (1999), 503.  doi: doi:10.1515/form.1999.011.  Google Scholar

[6]

N. Priebe, Towards a characterization of self-similar tilings via derived Voronoi tesselations,, Geometriae Dedicata, 79 (2000), 239.  doi: doi:10.1023/A:1005191014127.  Google Scholar

[7]

C. Radin, The pinwheel tilings of the plane,, Annals of Math., 139 (1994), 661.  doi: doi:10.2307/2118575.  Google Scholar

[8]

B. Rand, "Pattern-Equivariant Cohomology of Tiling Spaces With Rotations,", Ph.D. thesis in Mathematics, (2006).   Google Scholar

[9]

C. Radin and L. Sadun, Isomorphisms of hierarchical structures,, Ergodic Theory and Dynamical Systems, 21 (2001), 1239.  doi: doi:10.1017/S0143385701001572.  Google Scholar

[10]

L. Sadun, "Topology of Tiling Spaces,", University Lecture Series of the American Mathematical Society, 46 (2008).   Google Scholar

[1]

Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985

[2]

Jeong-Yup Lee, Boris Solomyak. On substitution tilings and Delone sets without finite local complexity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3149-3177. doi: 10.3934/dcds.2019130

[3]

Laura Poggiolini, Marco Spadini. Local inversion of a class of piecewise regular maps. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2207-2224. doi: 10.3934/cpaa.2018105

[4]

Alejandro Adem and Jeff H. Smith. On spaces with periodic cohomology. Electronic Research Announcements, 2000, 6: 1-6.

[5]

Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119

[6]

Jeong-Yup Lee, Boris Solomyak. Pisot family self-affine tilings, discrete spectrum, and the Meyer property. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 935-959. doi: 10.3934/dcds.2012.32.935

[7]

Daniel Guan. Modification and the cohomology groups of compact solvmanifolds. Electronic Research Announcements, 2007, 13: 74-81.

[8]

Huai-Dong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 24-34.

[9]

Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295

[10]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Local study of a renormalization operator for 1D maps under quasiperiodic forcing. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1171-1188. doi: 10.3934/dcdss.2016047

[11]

Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031

[12]

Boris Kalinin, Victoria Sadovskaya. Holonomies and cohomology for cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 245-259. doi: 10.3934/dcds.2016.36.245

[13]

Chenxi Wu. The relative cohomology of abelian covers of the flat pillowcase. Journal of Modern Dynamics, 2015, 9: 123-140. doi: 10.3934/jmd.2015.9.123

[14]

Federico Rodriguez Hertz, Jana Rodriguez Hertz. Cohomology free systems and the first Betti number. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 193-196. doi: 10.3934/dcds.2006.15.193

[15]

Rafael de la Llave, A. Windsor. Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1141-1154. doi: 10.3934/dcds.2011.29.1141

[16]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[17]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[18]

Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983

[19]

Dan-Andrei Geba, Manoussos G. Grillakis. Large data global regularity for the classical equivariant Skyrme model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5537-5576. doi: 10.3934/dcds.2018244

[20]

Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]