• Previous Article
    Global dissipativity and inertial manifolds for diffusive burgers equations with low-wavenumber instability
  • DCDS Home
  • This Issue
  • Next Article
    Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions
January  2011, 29(1): 323-326. doi: 10.3934/dcds.2011.29.323

An approximation theorem for maps between tiling spaces

1. 

Department of Mathematics, Texas Lutheran University, Seguin, TX 78155, United States

2. 

Department of Mathematics, The University of Texas at Austin, Austin, TX 78712

Received  August 2009 Revised  May 2010 Published  September 2010

We show that every continuous map from one translationally finite tiling space to another can be approximated by a local map. If two local maps are homotopic, then the homotopy can be chosen so that every interpolating map is also local.
Citation: Betseygail Rand, Lorenzo Sadun. An approximation theorem for maps between tiling spaces. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 323-326. doi: 10.3934/dcds.2011.29.323
References:
[1]

M. Barge, B. Diamond, J. Hunton and L. Sadun, Cohomology of substitution tiling spaces,, preprint, ().   Google Scholar

[2]

J. Kellondonk, Pattern-equivariant functions and cohomology,, J. Phys. A, 36 (2003), 1.   Google Scholar

[3]

J. Kellendonk and I. Putnam, The Ruelle-Sullivan map for $\R^n$ actions,, Math. Ann., 344 (2006), 693.  doi: doi:10.1007/s00208-005-0728-1.  Google Scholar

[4]

D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).  doi: doi:10.1017/CBO9780511626302.  Google Scholar

[5]

K. Petersen, Factor maps between tiling dynamical systems,, Forum Math., 11 (1999), 503.  doi: doi:10.1515/form.1999.011.  Google Scholar

[6]

N. Priebe, Towards a characterization of self-similar tilings via derived Voronoi tesselations,, Geometriae Dedicata, 79 (2000), 239.  doi: doi:10.1023/A:1005191014127.  Google Scholar

[7]

C. Radin, The pinwheel tilings of the plane,, Annals of Math., 139 (1994), 661.  doi: doi:10.2307/2118575.  Google Scholar

[8]

B. Rand, "Pattern-Equivariant Cohomology of Tiling Spaces With Rotations,", Ph.D. thesis in Mathematics, (2006).   Google Scholar

[9]

C. Radin and L. Sadun, Isomorphisms of hierarchical structures,, Ergodic Theory and Dynamical Systems, 21 (2001), 1239.  doi: doi:10.1017/S0143385701001572.  Google Scholar

[10]

L. Sadun, "Topology of Tiling Spaces,", University Lecture Series of the American Mathematical Society, 46 (2008).   Google Scholar

show all references

References:
[1]

M. Barge, B. Diamond, J. Hunton and L. Sadun, Cohomology of substitution tiling spaces,, preprint, ().   Google Scholar

[2]

J. Kellondonk, Pattern-equivariant functions and cohomology,, J. Phys. A, 36 (2003), 1.   Google Scholar

[3]

J. Kellendonk and I. Putnam, The Ruelle-Sullivan map for $\R^n$ actions,, Math. Ann., 344 (2006), 693.  doi: doi:10.1007/s00208-005-0728-1.  Google Scholar

[4]

D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).  doi: doi:10.1017/CBO9780511626302.  Google Scholar

[5]

K. Petersen, Factor maps between tiling dynamical systems,, Forum Math., 11 (1999), 503.  doi: doi:10.1515/form.1999.011.  Google Scholar

[6]

N. Priebe, Towards a characterization of self-similar tilings via derived Voronoi tesselations,, Geometriae Dedicata, 79 (2000), 239.  doi: doi:10.1023/A:1005191014127.  Google Scholar

[7]

C. Radin, The pinwheel tilings of the plane,, Annals of Math., 139 (1994), 661.  doi: doi:10.2307/2118575.  Google Scholar

[8]

B. Rand, "Pattern-Equivariant Cohomology of Tiling Spaces With Rotations,", Ph.D. thesis in Mathematics, (2006).   Google Scholar

[9]

C. Radin and L. Sadun, Isomorphisms of hierarchical structures,, Ergodic Theory and Dynamical Systems, 21 (2001), 1239.  doi: doi:10.1017/S0143385701001572.  Google Scholar

[10]

L. Sadun, "Topology of Tiling Spaces,", University Lecture Series of the American Mathematical Society, 46 (2008).   Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[3]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[4]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]