-
Previous Article
Global dissipativity and inertial manifolds for diffusive burgers equations with low-wavenumber instability
- DCDS Home
- This Issue
-
Next Article
Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions
An approximation theorem for maps between tiling spaces
1. | Department of Mathematics, Texas Lutheran University, Seguin, TX 78155, United States |
2. | Department of Mathematics, The University of Texas at Austin, Austin, TX 78712 |
References:
[1] |
M. Barge, B. Diamond, J. Hunton and L. Sadun, Cohomology of substitution tiling spaces,, preprint, ().
|
[2] |
J. Kellondonk, Pattern-equivariant functions and cohomology, J. Phys. A, 36 (2003), 1-8. |
[3] |
J. Kellendonk and I. Putnam, The Ruelle-Sullivan map for $\R^n$ actions, Math. Ann., 344 (2006), 693-711.
doi: doi:10.1007/s00208-005-0728-1. |
[4] |
D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding," Cambridge University Press, Cambridge, 1995.
doi: doi:10.1017/CBO9780511626302. |
[5] |
K. Petersen, Factor maps between tiling dynamical systems, Forum Math., 11 (1999), 503-512.
doi: doi:10.1515/form.1999.011. |
[6] |
N. Priebe, Towards a characterization of self-similar tilings via derived Voronoi tesselations, Geometriae Dedicata, 79 (2000), 239-265.
doi: doi:10.1023/A:1005191014127. |
[7] |
C. Radin, The pinwheel tilings of the plane, Annals of Math., 139 (1994), 661-702.
doi: doi:10.2307/2118575. |
[8] |
B. Rand, "Pattern-Equivariant Cohomology of Tiling Spaces With Rotations," Ph.D. thesis in Mathematics, University of Texas, 2006. |
[9] |
C. Radin and L. Sadun, Isomorphisms of hierarchical structures, Ergodic Theory and Dynamical Systems, 21 (2001), 1239-1248.
doi: doi:10.1017/S0143385701001572. |
[10] |
L. Sadun, "Topology of Tiling Spaces," University Lecture Series of the American Mathematical Society, 46, 2008. |
show all references
References:
[1] |
M. Barge, B. Diamond, J. Hunton and L. Sadun, Cohomology of substitution tiling spaces,, preprint, ().
|
[2] |
J. Kellondonk, Pattern-equivariant functions and cohomology, J. Phys. A, 36 (2003), 1-8. |
[3] |
J. Kellendonk and I. Putnam, The Ruelle-Sullivan map for $\R^n$ actions, Math. Ann., 344 (2006), 693-711.
doi: doi:10.1007/s00208-005-0728-1. |
[4] |
D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding," Cambridge University Press, Cambridge, 1995.
doi: doi:10.1017/CBO9780511626302. |
[5] |
K. Petersen, Factor maps between tiling dynamical systems, Forum Math., 11 (1999), 503-512.
doi: doi:10.1515/form.1999.011. |
[6] |
N. Priebe, Towards a characterization of self-similar tilings via derived Voronoi tesselations, Geometriae Dedicata, 79 (2000), 239-265.
doi: doi:10.1023/A:1005191014127. |
[7] |
C. Radin, The pinwheel tilings of the plane, Annals of Math., 139 (1994), 661-702.
doi: doi:10.2307/2118575. |
[8] |
B. Rand, "Pattern-Equivariant Cohomology of Tiling Spaces With Rotations," Ph.D. thesis in Mathematics, University of Texas, 2006. |
[9] |
C. Radin and L. Sadun, Isomorphisms of hierarchical structures, Ergodic Theory and Dynamical Systems, 21 (2001), 1239-1248.
doi: doi:10.1017/S0143385701001572. |
[10] |
L. Sadun, "Topology of Tiling Spaces," University Lecture Series of the American Mathematical Society, 46, 2008. |
[1] |
Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985 |
[2] |
Jeong-Yup Lee, Boris Solomyak. On substitution tilings and Delone sets without finite local complexity. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3149-3177. doi: 10.3934/dcds.2019130 |
[3] |
Daniel Amin, Mikael Vejdemo-Johansson. Intrinsic disease maps using persistent cohomology. Foundations of Data Science, 2021 doi: 10.3934/fods.2021008 |
[4] |
Laura Poggiolini, Marco Spadini. Local inversion of a class of piecewise regular maps. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2207-2224. doi: 10.3934/cpaa.2018105 |
[5] |
Scott Schmieding, Rodrigo Treviño. Random substitution tilings and deviation phenomena. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3869-3902. doi: 10.3934/dcds.2021020 |
[6] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[7] |
Alejandro Adem and Jeff H. Smith. On spaces with periodic cohomology. Electronic Research Announcements, 2000, 6: 1-6. |
[8] |
Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119 |
[9] |
Jeong-Yup Lee, Boris Solomyak. Pisot family self-affine tilings, discrete spectrum, and the Meyer property. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 935-959. doi: 10.3934/dcds.2012.32.935 |
[10] |
Xiaoqi Wei, Guo-Wei Wei. Homotopy continuation for the spectra of persistent Laplacians. Foundations of Data Science, 2021, 3 (4) : 677-700. doi: 10.3934/fods.2021017 |
[11] |
Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Local study of a renormalization operator for 1D maps under quasiperiodic forcing. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1171-1188. doi: 10.3934/dcdss.2016047 |
[12] |
Daniel Guan. Modification and the cohomology groups of compact solvmanifolds. Electronic Research Announcements, 2007, 13: 74-81. |
[13] |
Huai-Dong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 24-34. |
[14] |
Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295 |
[15] |
Jiangsheng Hu, Dongdong Zhang, Tiwei Zhao, Panyue Zhou. Balance of complete cohomology in extriangulated categories. Electronic Research Archive, 2021, 29 (5) : 3341-3359. doi: 10.3934/era.2021042 |
[16] |
Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031 |
[17] |
Boris Kalinin, Victoria Sadovskaya. Holonomies and cohomology for cocycles over partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 245-259. doi: 10.3934/dcds.2016.36.245 |
[18] |
Chenxi Wu. The relative cohomology of abelian covers of the flat pillowcase. Journal of Modern Dynamics, 2015, 9: 123-140. doi: 10.3934/jmd.2015.9.123 |
[19] |
Federico Rodriguez Hertz, Jana Rodriguez Hertz. Cohomology free systems and the first Betti number. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 193-196. doi: 10.3934/dcds.2006.15.193 |
[20] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks and Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]