• Previous Article
    The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion
  • DCDS Home
  • This Issue
  • Next Article
    Global dissipativity and inertial manifolds for diffusive burgers equations with low-wavenumber instability
January  2011, 29(1): 343-366. doi: 10.3934/dcds.2011.29.343

Spatial dynamics of a nonlocal and delayed population model in a periodic habitat

1. 

School of Mathematics, South China Normal University, Guangzhou 510631, China

2. 

Department of Mathematics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada

Received  January 2010 Revised  July 2010 Published  September 2010

We derived an age-structured population model with nonlocal effects and time delay in a periodic habitat. The spatial dynamics of the model including the comparison principle, the global attractivity of spatially periodic equilibrium, spreading speeds, and spatially periodic traveling wavefronts is investigated. It turns out that the spreading speed coincides with the minimal wave speed for spatially periodic travel waves.
Citation: Peixuan Weng, Xiao-Qiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 343-366. doi: 10.3934/dcds.2011.29.343
References:
[1]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model: I-Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: doi:10.1007/s00285-004-0313-3.  Google Scholar

[2]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl., 84 (2005), 1101.  doi: doi:10.1016/j.matpur.2004.10.006.  Google Scholar

[3]

O. Diekmann, Thresholds and traveling waves for the geographical spread of infection,, J. Math. Biol., 6 (1978), 109.  doi: doi:10.1007/BF02450783.  Google Scholar

[4]

N. Dunford and J. T. Schwartz, "Linear Operators, Part I: General Theory," 1st edition,, Interscience, (1958).   Google Scholar

[5]

M. I. Friedlin, On wavefront propagation in periodic media, stochastic analysis and applications,, in, 7 (1984), 147.   Google Scholar

[6]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).   Google Scholar

[7]

J. Gärtner and M. I. Freidlin, The propagation of concentration waves in periodic and random media,, Soviet Math. Dokl., 20 (1979), 1282.   Google Scholar

[8]

J. Guo and F. Hamel, Front propagation for discrete periodic monostable equations, Mathematische Annalen, 335 (2006), 489.  doi: doi:10.1007/s00208-005-0729-0.  Google Scholar

[9]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure,, Proc. R. Soc. Lond. Ser. A., 459 (2003), 1563.  doi: doi:10.1098/rspa.2002.1094.  Google Scholar

[10]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993).   Google Scholar

[11]

P. Hess, "Periodic-parabolic Boundary Value Problems and Positivity,", Longman Scientific & Technical, (1991).   Google Scholar

[12]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: doi:10.1137/070703016.  Google Scholar

[13]

Y. Jin and X.-Q. Zhao, Spacial dynamics of a discrete-time population model in a periodic lattics habitat,, J. Dynam. Differential Equations, 21 (2009), 501.  doi: doi:10.1007/s10884-009-9138-5.  Google Scholar

[14]

W. Kerscher and R. Nagel, Asymptotic behavior of one-parameter semigroups of positive operators,, Acta Applicandae Math., 2 (1984), 297.  doi: doi:10.1007/BF02280856.  Google Scholar

[15]

N. Kinezaki, K. Kawasaki, F. Takasu and N. Shigesada, Modelling biological invasions into periodically fragmented environments,, Theor. Popul. Biol., 64 (2003), 291.  doi: doi:10.1016/S0040-5809(03)00091-1.  Google Scholar

[16]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in the Banach space,, Amer. Math. Soc. Translations, 26 (1950), 3.   Google Scholar

[17]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.   Google Scholar

[18]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, Journal of Functional Analysis, 259 (2010), 857.  doi: doi:10.1016/j.jfa.2010.04.018.  Google Scholar

[19]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: doi:10.1016/0025-5564(89)90026-6.  Google Scholar

[20]

R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory,, Math. Biosci., 93 (1989), 297.  doi: doi:10.1016/0025-5564(89)90027-8.  Google Scholar

[21]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: doi:10.2307/2001590.  Google Scholar

[22]

R. H. Martin and H. L. Smith, Reaction-diffusion systems with time delays: Monotonicity, invariance, comparison and convergence,, J. reine angew. Math., 413 (1991), 1.   Google Scholar

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983).   Google Scholar

[24]

L. Rass and J. Radcliffe, "Spatial Deterministic Epidemics,", Mathematical Surveys and Monographs, 102 (2003).   Google Scholar

[25]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.   Google Scholar

[26]

N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments,, Theoretical Population Biol., 30 (1986), 143.  doi: doi:10.1016/0040-5809(86)90029-8.  Google Scholar

[27]

J. W.-H. So and J. Wu, X. Zou, A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on the unbounded domains,, Proc. R. Soc. Lond. Ser. A., 457 (2001), 1841.  doi: doi:10.1098/rspa.2001.0789.  Google Scholar

[28]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514.  doi: doi:10.1137/S0036141098346785.  Google Scholar

[29]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. Math. Biology, 8 (1979), 173.  doi: doi:10.1007/BF00279720.  Google Scholar

[30]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: doi:10.1016/S0022-0396(03)00175-X.  Google Scholar

[31]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model,, Nonlinear Analysis: Real World Application, 2 (2001), 145.  doi: doi:10.1016/S0362-546X(00)00112-7.  Google Scholar

[32]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994).   Google Scholar

[33]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: doi:10.1137/0513028.  Google Scholar

[34]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: doi:10.1007/s00285-002-0169-3.  Google Scholar

[35]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: doi:10.1007/s002850200145.  Google Scholar

[36]

H. F. Weinberger, K. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions,, J. Math. Biol., 57 (2008), 387.  doi: doi:10.1007/s00285-008-0168-0.  Google Scholar

[37]

P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409.  doi: doi:10.1093/imamat/68.4.409.  Google Scholar

[38]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, J. Differential Equations, 229 (2006), 270.  doi: doi:10.1016/j.jde.2006.01.020.  Google Scholar

[39]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: doi:10.1137/S0036144599364296.  Google Scholar

[40]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", Springer-Verlag, (2003).   Google Scholar

show all references

References:
[1]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model: I-Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: doi:10.1007/s00285-004-0313-3.  Google Scholar

[2]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl., 84 (2005), 1101.  doi: doi:10.1016/j.matpur.2004.10.006.  Google Scholar

[3]

O. Diekmann, Thresholds and traveling waves for the geographical spread of infection,, J. Math. Biol., 6 (1978), 109.  doi: doi:10.1007/BF02450783.  Google Scholar

[4]

N. Dunford and J. T. Schwartz, "Linear Operators, Part I: General Theory," 1st edition,, Interscience, (1958).   Google Scholar

[5]

M. I. Friedlin, On wavefront propagation in periodic media, stochastic analysis and applications,, in, 7 (1984), 147.   Google Scholar

[6]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).   Google Scholar

[7]

J. Gärtner and M. I. Freidlin, The propagation of concentration waves in periodic and random media,, Soviet Math. Dokl., 20 (1979), 1282.   Google Scholar

[8]

J. Guo and F. Hamel, Front propagation for discrete periodic monostable equations, Mathematische Annalen, 335 (2006), 489.  doi: doi:10.1007/s00208-005-0729-0.  Google Scholar

[9]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure,, Proc. R. Soc. Lond. Ser. A., 459 (2003), 1563.  doi: doi:10.1098/rspa.2002.1094.  Google Scholar

[10]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993).   Google Scholar

[11]

P. Hess, "Periodic-parabolic Boundary Value Problems and Positivity,", Longman Scientific & Technical, (1991).   Google Scholar

[12]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: doi:10.1137/070703016.  Google Scholar

[13]

Y. Jin and X.-Q. Zhao, Spacial dynamics of a discrete-time population model in a periodic lattics habitat,, J. Dynam. Differential Equations, 21 (2009), 501.  doi: doi:10.1007/s10884-009-9138-5.  Google Scholar

[14]

W. Kerscher and R. Nagel, Asymptotic behavior of one-parameter semigroups of positive operators,, Acta Applicandae Math., 2 (1984), 297.  doi: doi:10.1007/BF02280856.  Google Scholar

[15]

N. Kinezaki, K. Kawasaki, F. Takasu and N. Shigesada, Modelling biological invasions into periodically fragmented environments,, Theor. Popul. Biol., 64 (2003), 291.  doi: doi:10.1016/S0040-5809(03)00091-1.  Google Scholar

[16]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in the Banach space,, Amer. Math. Soc. Translations, 26 (1950), 3.   Google Scholar

[17]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.   Google Scholar

[18]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, Journal of Functional Analysis, 259 (2010), 857.  doi: doi:10.1016/j.jfa.2010.04.018.  Google Scholar

[19]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: doi:10.1016/0025-5564(89)90026-6.  Google Scholar

[20]

R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory,, Math. Biosci., 93 (1989), 297.  doi: doi:10.1016/0025-5564(89)90027-8.  Google Scholar

[21]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: doi:10.2307/2001590.  Google Scholar

[22]

R. H. Martin and H. L. Smith, Reaction-diffusion systems with time delays: Monotonicity, invariance, comparison and convergence,, J. reine angew. Math., 413 (1991), 1.   Google Scholar

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983).   Google Scholar

[24]

L. Rass and J. Radcliffe, "Spatial Deterministic Epidemics,", Mathematical Surveys and Monographs, 102 (2003).   Google Scholar

[25]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.   Google Scholar

[26]

N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments,, Theoretical Population Biol., 30 (1986), 143.  doi: doi:10.1016/0040-5809(86)90029-8.  Google Scholar

[27]

J. W.-H. So and J. Wu, X. Zou, A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on the unbounded domains,, Proc. R. Soc. Lond. Ser. A., 457 (2001), 1841.  doi: doi:10.1098/rspa.2001.0789.  Google Scholar

[28]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514.  doi: doi:10.1137/S0036141098346785.  Google Scholar

[29]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. Math. Biology, 8 (1979), 173.  doi: doi:10.1007/BF00279720.  Google Scholar

[30]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: doi:10.1016/S0022-0396(03)00175-X.  Google Scholar

[31]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model,, Nonlinear Analysis: Real World Application, 2 (2001), 145.  doi: doi:10.1016/S0362-546X(00)00112-7.  Google Scholar

[32]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994).   Google Scholar

[33]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: doi:10.1137/0513028.  Google Scholar

[34]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: doi:10.1007/s00285-002-0169-3.  Google Scholar

[35]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: doi:10.1007/s002850200145.  Google Scholar

[36]

H. F. Weinberger, K. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions,, J. Math. Biol., 57 (2008), 387.  doi: doi:10.1007/s00285-008-0168-0.  Google Scholar

[37]

P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409.  doi: doi:10.1093/imamat/68.4.409.  Google Scholar

[38]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, J. Differential Equations, 229 (2006), 270.  doi: doi:10.1016/j.jde.2006.01.020.  Google Scholar

[39]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: doi:10.1137/S0036144599364296.  Google Scholar

[40]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", Springer-Verlag, (2003).   Google Scholar

[1]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

[2]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

[3]

Nar Rawal, Wenxian Shen, Aijun Zhang. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1609-1640. doi: 10.3934/dcds.2015.35.1609

[4]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[5]

Weiwei Ding, Xing Liang, Bin Xu. Spreading speeds of $N$-season spatially periodic integro-difference models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3443-3472. doi: 10.3934/dcds.2013.33.3443

[6]

Ming Mei, Yau Shu Wong. Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 743-752. doi: 10.3934/mbe.2009.6.743

[7]

Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi. An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences & Engineering, 2008, 5 (2) : 337-354. doi: 10.3934/mbe.2008.5.337

[8]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

[9]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[10]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[11]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[12]

Ryszard Rudnicki, Radosław Wieczorek. On a nonlinear age-structured model of semelparous species. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2641-2656. doi: 10.3934/dcdsb.2014.19.2641

[13]

Mohammed Nor Frioui, Tarik Mohammed Touaoula, Bedreddine Ainseba. Global dynamics of an age-structured model with relapse. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019226

[14]

Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45

[15]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[16]

Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040

[17]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[18]

Huimin Liang, Peixuan Weng, Yanling Tian. Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2207-2231. doi: 10.3934/dcdsb.2017093

[19]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[20]

Georgi Kapitanov, Christina Alvey, Katia Vogt-Geisse, Zhilan Feng. An age-structured model for the coupled dynamics of HIV and HSV-2. Mathematical Biosciences & Engineering, 2015, 12 (4) : 803-840. doi: 10.3934/mbe.2015.12.803

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]