• Previous Article
    Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers
  • DCDS Home
  • This Issue
  • Next Article
    Spatial dynamics of a nonlocal and delayed population model in a periodic habitat
January  2011, 29(1): 367-385. doi: 10.3934/dcds.2011.29.367

The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion

1. 

Department of Mathematics, Capital Normal University, Beijing 100048, China, China

Received  November 2009 Revised  June 2010 Published  September 2010

This paper is concerned with the existence of large positive spiky steady states for S-K-T competition systems with cross-diffusion. Firstly by detailed integral and perturbation estimates, the existence and detailed fast-slow structure of a class of spiky steady states are obtained for the corresponding shadow system, which also verify and extend some existence results on spiky steady states obtained in [10] by different method of proof. Further by applying special perturbation method, we prove the existence of large positive spiky steady states for the original competition systems with large cross-diffusion rate.
Citation: Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367
References:
[1]

Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719.  doi: doi:10.3934/dcds.2004.10.719.  Google Scholar

[2]

H. Kuiper and L. Dung, Global attractors for cross diffusion systems on domains of arbitrary dimension, Rocky Mountain, J. Math., 37 (2007), 1645.  doi: doi:10.1216/rmjm/1194275939.  Google Scholar

[3]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509.   Google Scholar

[4]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Differential Equations, 58 (1985), 15.  doi: doi:10.1016/0022-0396(85)90020-8.  Google Scholar

[5]

T. Kolokolnikov, M. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model, the pulse-splitting regime,, Phys. D, 202 (2005), 258.  doi: doi:10.1016/j.physd.2005.02.009.  Google Scholar

[6]

C.-S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1.  doi: doi:10.1016/0022-0396(88)90147-7.  Google Scholar

[7]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: doi:10.1006/jdeq.1996.0157.  Google Scholar

[8]

Y. Lou and W. M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157.  doi: doi:10.1006/jdeq.1998.3559.  Google Scholar

[9]

Y. Lou, W. M. Ni and Y. Wu, On the global existence of a cross-diffusion system,, Discrete Contin. Dyn. Syst., 4 (1998), 193.  doi: doi:10.3934/dcds.1998.4.193.  Google Scholar

[10]

Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion,, Discrete Contin. Dyn. Syst, 10 (2004), 435.  doi: doi:10.3934/dcds.2004.10.435.  Google Scholar

[11]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425.   Google Scholar

[12]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9.   Google Scholar

[13]

W. M. Ni, I. Takagi and E. Yanagida, Stability analysis of point condensation solutions to a reaction-diffusion system proposed by Gierer and Meinhardt,, Tohoku Math. J., ().   Google Scholar

[14]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: doi:10.1016/0022-5193(79)90258-3.  Google Scholar

[15]

B. D. Sleeman, M. J. Ward and J. Wei, The existence and stability of spike patterns in a chemotaxis model,, SIAM J. Appl. Math., 65 (2005), 790.  doi: doi:10.1137/S0036139902415117.  Google Scholar

[16]

J.Wei, Existence and stability of spikes for the Gierer-Meinhardt systems,, Handbook of Differential Equations: Stationary Partial Differential Equations, (2008), 487.   Google Scholar

[17]

Y. Wu, Existence of stationary solutions with transition layers for a class of cross-diffusion systems,, Proc. of Royal Soc. Edinburg, 132 (2002), 1493.   Google Scholar

[18]

Y. Wu and X. Zhao, The existence and stability of traveling waves with transition layers for some singular cross-diffuion systems,, Phys. D, 200 (2005), 325.  doi: doi:10.1016/j.physd.2004.11.010.  Google Scholar

[19]

Y. Wu and Y. Zhao, The existence and stability of traveling waves with transition layers for S-K-T competition model with cross-diffusion,, Sci. China Math., 53 (2010), 1161.  doi: doi:10.1007/s11425-010-0141-4.  Google Scholar

show all references

References:
[1]

Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719.  doi: doi:10.3934/dcds.2004.10.719.  Google Scholar

[2]

H. Kuiper and L. Dung, Global attractors for cross diffusion systems on domains of arbitrary dimension, Rocky Mountain, J. Math., 37 (2007), 1645.  doi: doi:10.1216/rmjm/1194275939.  Google Scholar

[3]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509.   Google Scholar

[4]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Differential Equations, 58 (1985), 15.  doi: doi:10.1016/0022-0396(85)90020-8.  Google Scholar

[5]

T. Kolokolnikov, M. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model, the pulse-splitting regime,, Phys. D, 202 (2005), 258.  doi: doi:10.1016/j.physd.2005.02.009.  Google Scholar

[6]

C.-S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1.  doi: doi:10.1016/0022-0396(88)90147-7.  Google Scholar

[7]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: doi:10.1006/jdeq.1996.0157.  Google Scholar

[8]

Y. Lou and W. M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157.  doi: doi:10.1006/jdeq.1998.3559.  Google Scholar

[9]

Y. Lou, W. M. Ni and Y. Wu, On the global existence of a cross-diffusion system,, Discrete Contin. Dyn. Syst., 4 (1998), 193.  doi: doi:10.3934/dcds.1998.4.193.  Google Scholar

[10]

Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion,, Discrete Contin. Dyn. Syst, 10 (2004), 435.  doi: doi:10.3934/dcds.2004.10.435.  Google Scholar

[11]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425.   Google Scholar

[12]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9.   Google Scholar

[13]

W. M. Ni, I. Takagi and E. Yanagida, Stability analysis of point condensation solutions to a reaction-diffusion system proposed by Gierer and Meinhardt,, Tohoku Math. J., ().   Google Scholar

[14]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: doi:10.1016/0022-5193(79)90258-3.  Google Scholar

[15]

B. D. Sleeman, M. J. Ward and J. Wei, The existence and stability of spike patterns in a chemotaxis model,, SIAM J. Appl. Math., 65 (2005), 790.  doi: doi:10.1137/S0036139902415117.  Google Scholar

[16]

J.Wei, Existence and stability of spikes for the Gierer-Meinhardt systems,, Handbook of Differential Equations: Stationary Partial Differential Equations, (2008), 487.   Google Scholar

[17]

Y. Wu, Existence of stationary solutions with transition layers for a class of cross-diffusion systems,, Proc. of Royal Soc. Edinburg, 132 (2002), 1493.   Google Scholar

[18]

Y. Wu and X. Zhao, The existence and stability of traveling waves with transition layers for some singular cross-diffuion systems,, Phys. D, 200 (2005), 325.  doi: doi:10.1016/j.physd.2004.11.010.  Google Scholar

[19]

Y. Wu and Y. Zhao, The existence and stability of traveling waves with transition layers for S-K-T competition model with cross-diffusion,, Sci. China Math., 53 (2010), 1161.  doi: doi:10.1007/s11425-010-0141-4.  Google Scholar

[1]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[2]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[3]

Jing Liu, Xiaodong Liu, Sining Zheng, Yanping Lin. Positive steady state of a food chain system with diffusion. Conference Publications, 2007, 2007 (Special) : 667-676. doi: 10.3934/proc.2007.2007.667

[4]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[5]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[6]

Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271

[7]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020051

[8]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[9]

Philippe Souplet, Juan-Luis Vázquez. Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 221-234. doi: 10.3934/dcds.2006.14.221

[10]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[11]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[12]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[13]

Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805

[14]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[15]

Lorena Bociu, Jean-Paul Zolésio. Existence for the linearization of a steady state fluid/nonlinear elasticity interaction. Conference Publications, 2011, 2011 (Special) : 184-197. doi: 10.3934/proc.2011.2011.184

[16]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019198

[17]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[18]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[19]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[20]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]