- Previous Article
- DCDS Home
- This Issue
-
Next Article
The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion
Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers
1. | Department of Mechanical and Systems Engineering, Gifu University, Gifu 501-1193, Japan |
References:
[1] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition,, Addison-Wesley, (1978).
|
[2] |
J. Cresson, Hyperbolicity, transversality and analytic first integrals,, J. Differential Equations, 196 (2004), 289.
doi: doi:10.1016/j.jde.2003.10.002. |
[3] |
R. Cushman, Examples of nonintegrable analytic Hamiltonian vector fields with no small divisor,, Trans. Amer. Math. Soc., 238 (1978), 45.
|
[4] |
H. Dankowicz, Looking for chaos: An extension and alternative to Melnikov's method,, Int. J. Bifurcation Chaos, 6 (1996), 485.
doi: doi:10.1142/S0218127496000205. |
[5] |
E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang, "AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont),", Concordia University, (1997). Google Scholar |
[6] |
J. R. Dormand and P. J. Prince, Practical Runge-Kutta processes,, SIAM J. Sci. Stat. Comput., 10 (1989), 977.
doi: doi:10.1137/0910057. |
[7] |
S. A. Dovbysh, Transversal intersection of separatrices and branching of solutions as obstructions to the existence of an analytic integral in many-dimensional systems. I. Basic result: Separatrices of hyperbolic periodic points,, Collect. Math., 50 (1999), 119.
|
[8] |
N. Fenichel, Persistence and smoothness of invariant manifolds for flow,, Ind. Univ. Math. J., 21 (1971), 193.
doi: doi:10.1512/iumj.1971.21.21017. |
[9] |
A. Goriely, "Integrability and Nonintegrability of Dynamical Systems,", World Scientific, (2001).
doi: doi:10.1142/9789812811943. |
[10] |
C. Grotta-Ragazzo, Nonintegrability of some Hamiltonian systems, scattering and analytic continuation,, Commun. Math. Phys., 166 (1994), 255.
doi: doi:10.1007/BF02112316. |
[11] |
C. Grotta-Ragazzo, Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers,, Commun. Pure Appl. Math., 50 (1997), 105.
doi: doi:10.1002/(SICI)1097-0312(199702)50:2<105::AID-CPA1>3.0.CO;2-G. |
[12] |
J. Guckenheimer and P. J. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983).
|
[13] |
E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations I," 2nd edition,, Springer-Verlag, (1993).
|
[14] |
G. Haller, "Chaos near Resonances,", Springer-Verlag, (1999).
|
[15] |
M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments,, Astron. J., 69 (1964), 73.
doi: doi:10.1086/109234. |
[16] |
H. Ito, Non-integrability of Hénon-Heiles system and a theorem of Ziglin,, Kodai Math. J., 8 (1985), 120.
doi: doi:10.2996/kmj/1138037004. |
[17] |
H. Ito, A criterion for non-integrability of Hamiltonian systems with nonhomogeneous potentials,, J. Appl. Math. Phys. (ZAMP), 38 (1987), 459.
doi: doi:10.1007/BF00944963. |
[18] |
O. Y. Koltsova and L. M. Lerman, Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center,, Int. J. Bifurcation Chaos, 5 (1995), 397.
doi: doi:10.1142/S0218127495000338. |
[19] |
L. M. Lerman, Hamiltonian systems with loops of a separatrix of a saddle-center,, Selecta Math. Sov., 10 (1991), 297.
|
[20] |
V. K. Melnikov, On the stability of the center for time periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.
|
[21] |
K. R. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,", Springer-Verlag, (1992).
|
[22] |
A. Mielke, P. J. Holmes and O. O'Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center,, J. Dyn. Diff. Eqn., 4 (1992), 95.
doi: doi:10.1007/BF01048157. |
[23] |
J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Birkhäuser, (1999).
|
[24] |
J. J. Morales-Ruiz and J. M. Peris, On a Galoisian approach to the splitting of separatrices,, Ann. Fac. Sci. Toulouse Math., 8 (1999), 125.
|
[25] |
J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems I,, Methods Appl. Anal., 8 (2001), 33.
|
[26] |
H. E. Nusse and J. A. Yorke, "Dynamics: Numerical Explorations," 2nd edition,, Springer-Verlag, (1997).
|
[27] |
J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", Springer-Verlag, (1985).
|
[28] |
L. P. Shil'nikov, A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type,, Math. USSR Sbornik, 10 (1970), 91.
doi: doi:10.1070/SM1970v010n01ABEH001588. |
[29] |
A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations,, in:, 2 (1989), 89.
|
[30] |
S. Wiggins, "Global Bifurcations and Chaos-Analytical Methods,", Springer-Verlag, (1988).
|
[31] |
S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer-Verlag, (1990).
|
[32] |
S. Wiggins, "Normally Hyperbolic Invariant Manifolds in Dynamical Systems,", Springer-Verlag, (1994).
|
[33] |
K. Yagasaki, Horseshoes in two-degree-of-freedom Hamiltonian systems with saddle-centers,, Arch. Rational Mech. Anal., 154 (2000), 275.
doi: doi:10.1007/s002050000094. |
[34] |
K. Yagasaki, Homoclinic and heteroclinic behavior in an infinite-degree-of-freedom Hamiltonian system: Chaotic free vibrations of an undamped, buckled beam,, Phys. Lett. A, 285 (2001), 55.
doi: doi:10.1016/S0375-9601(01)00324-3. |
[35] |
K. Yagasaki, Numerical evidence of fast diffusion in a three-degree-of-freedom Hamiltonian system with a saddle-center,, Phys. Lett. A, 301 (2002), 45.
doi: doi:10.1016/S0375-9601(02)00936-2. |
[36] |
K. Yagasaki, Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamiltonian systems with saddle-centers,, Nonlinearity, 16 (2003), 2003.
doi: doi:10.1088/0951-7715/16/6/307. |
[37] |
K. Yagasaki, Homoclinic and heteroclinic orbits to invariant tori in multi-degree-of-freedom Hamiltonian systems with saddle-centers,, Nonlinearity, 18 (2005), 1331.
doi: doi:10.1088/0951-7715/18/3/020. |
[38] |
K. Yagasaki, Numerical analysis for global bifurcations of periodic orbits in autonomous differential equations,, in preparation., (). Google Scholar |
[39] |
K. Yagasaki, "HomMap: A Package of AUTO and Dynamics Drivers for Homoclinic Bifurcation Analysis for Periodic Orbits of Maps and ODEs, Version $2.0$,", in preparation., (). Google Scholar |
[40] |
S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics, I,, Funct. Anal. Appl., 16 (1982), 181.
doi: doi:10.1007/BF01081586. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition,, Addison-Wesley, (1978).
|
[2] |
J. Cresson, Hyperbolicity, transversality and analytic first integrals,, J. Differential Equations, 196 (2004), 289.
doi: doi:10.1016/j.jde.2003.10.002. |
[3] |
R. Cushman, Examples of nonintegrable analytic Hamiltonian vector fields with no small divisor,, Trans. Amer. Math. Soc., 238 (1978), 45.
|
[4] |
H. Dankowicz, Looking for chaos: An extension and alternative to Melnikov's method,, Int. J. Bifurcation Chaos, 6 (1996), 485.
doi: doi:10.1142/S0218127496000205. |
[5] |
E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang, "AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont),", Concordia University, (1997). Google Scholar |
[6] |
J. R. Dormand and P. J. Prince, Practical Runge-Kutta processes,, SIAM J. Sci. Stat. Comput., 10 (1989), 977.
doi: doi:10.1137/0910057. |
[7] |
S. A. Dovbysh, Transversal intersection of separatrices and branching of solutions as obstructions to the existence of an analytic integral in many-dimensional systems. I. Basic result: Separatrices of hyperbolic periodic points,, Collect. Math., 50 (1999), 119.
|
[8] |
N. Fenichel, Persistence and smoothness of invariant manifolds for flow,, Ind. Univ. Math. J., 21 (1971), 193.
doi: doi:10.1512/iumj.1971.21.21017. |
[9] |
A. Goriely, "Integrability and Nonintegrability of Dynamical Systems,", World Scientific, (2001).
doi: doi:10.1142/9789812811943. |
[10] |
C. Grotta-Ragazzo, Nonintegrability of some Hamiltonian systems, scattering and analytic continuation,, Commun. Math. Phys., 166 (1994), 255.
doi: doi:10.1007/BF02112316. |
[11] |
C. Grotta-Ragazzo, Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers,, Commun. Pure Appl. Math., 50 (1997), 105.
doi: doi:10.1002/(SICI)1097-0312(199702)50:2<105::AID-CPA1>3.0.CO;2-G. |
[12] |
J. Guckenheimer and P. J. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983).
|
[13] |
E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations I," 2nd edition,, Springer-Verlag, (1993).
|
[14] |
G. Haller, "Chaos near Resonances,", Springer-Verlag, (1999).
|
[15] |
M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments,, Astron. J., 69 (1964), 73.
doi: doi:10.1086/109234. |
[16] |
H. Ito, Non-integrability of Hénon-Heiles system and a theorem of Ziglin,, Kodai Math. J., 8 (1985), 120.
doi: doi:10.2996/kmj/1138037004. |
[17] |
H. Ito, A criterion for non-integrability of Hamiltonian systems with nonhomogeneous potentials,, J. Appl. Math. Phys. (ZAMP), 38 (1987), 459.
doi: doi:10.1007/BF00944963. |
[18] |
O. Y. Koltsova and L. M. Lerman, Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center,, Int. J. Bifurcation Chaos, 5 (1995), 397.
doi: doi:10.1142/S0218127495000338. |
[19] |
L. M. Lerman, Hamiltonian systems with loops of a separatrix of a saddle-center,, Selecta Math. Sov., 10 (1991), 297.
|
[20] |
V. K. Melnikov, On the stability of the center for time periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.
|
[21] |
K. R. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,", Springer-Verlag, (1992).
|
[22] |
A. Mielke, P. J. Holmes and O. O'Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center,, J. Dyn. Diff. Eqn., 4 (1992), 95.
doi: doi:10.1007/BF01048157. |
[23] |
J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Birkhäuser, (1999).
|
[24] |
J. J. Morales-Ruiz and J. M. Peris, On a Galoisian approach to the splitting of separatrices,, Ann. Fac. Sci. Toulouse Math., 8 (1999), 125.
|
[25] |
J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems I,, Methods Appl. Anal., 8 (2001), 33.
|
[26] |
H. E. Nusse and J. A. Yorke, "Dynamics: Numerical Explorations," 2nd edition,, Springer-Verlag, (1997).
|
[27] |
J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", Springer-Verlag, (1985).
|
[28] |
L. P. Shil'nikov, A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type,, Math. USSR Sbornik, 10 (1970), 91.
doi: doi:10.1070/SM1970v010n01ABEH001588. |
[29] |
A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations,, in:, 2 (1989), 89.
|
[30] |
S. Wiggins, "Global Bifurcations and Chaos-Analytical Methods,", Springer-Verlag, (1988).
|
[31] |
S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer-Verlag, (1990).
|
[32] |
S. Wiggins, "Normally Hyperbolic Invariant Manifolds in Dynamical Systems,", Springer-Verlag, (1994).
|
[33] |
K. Yagasaki, Horseshoes in two-degree-of-freedom Hamiltonian systems with saddle-centers,, Arch. Rational Mech. Anal., 154 (2000), 275.
doi: doi:10.1007/s002050000094. |
[34] |
K. Yagasaki, Homoclinic and heteroclinic behavior in an infinite-degree-of-freedom Hamiltonian system: Chaotic free vibrations of an undamped, buckled beam,, Phys. Lett. A, 285 (2001), 55.
doi: doi:10.1016/S0375-9601(01)00324-3. |
[35] |
K. Yagasaki, Numerical evidence of fast diffusion in a three-degree-of-freedom Hamiltonian system with a saddle-center,, Phys. Lett. A, 301 (2002), 45.
doi: doi:10.1016/S0375-9601(02)00936-2. |
[36] |
K. Yagasaki, Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamiltonian systems with saddle-centers,, Nonlinearity, 16 (2003), 2003.
doi: doi:10.1088/0951-7715/16/6/307. |
[37] |
K. Yagasaki, Homoclinic and heteroclinic orbits to invariant tori in multi-degree-of-freedom Hamiltonian systems with saddle-centers,, Nonlinearity, 18 (2005), 1331.
doi: doi:10.1088/0951-7715/18/3/020. |
[38] |
K. Yagasaki, Numerical analysis for global bifurcations of periodic orbits in autonomous differential equations,, in preparation., (). Google Scholar |
[39] |
K. Yagasaki, "HomMap: A Package of AUTO and Dynamics Drivers for Homoclinic Bifurcation Analysis for Periodic Orbits of Maps and ODEs, Version $2.0$,", in preparation., (). Google Scholar |
[40] |
S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics, I,, Funct. Anal. Appl., 16 (1982), 181.
doi: doi:10.1007/BF01081586. |
[1] |
Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 |
[2] |
Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure & Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583 |
[3] |
Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915 |
[4] |
Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645 |
[5] |
Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839 |
[6] |
Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 |
[7] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 |
[8] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 |
[9] |
Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443 |
[10] |
Lingling Liu, Bo Gao, Dongmei Xiao, Weinian Zhang. Identification of focus and center in a 3-dimensional system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 485-522. doi: 10.3934/dcdsb.2014.19.485 |
[11] |
E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53 |
[12] |
Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573 |
[13] |
Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210 |
[14] |
V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277 |
[15] |
Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789 |
[16] |
Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995 |
[17] |
Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187 |
[18] |
Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599 |
[19] |
Xing Huang, Wujun Lv. Stochastic functional Hamiltonian system with singular coefficients. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1257-1273. doi: 10.3934/cpaa.2020060 |
[20] |
Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]