• Previous Article
    Existence of minimizers for nonautonomous highly discontinuous scalar multiple integrals with pointwise constrained gradients
  • DCDS Home
  • This Issue
  • Next Article
    On a generalization of the impulsive control concept: Controlling system jumps
April  2011, 29(2): 417-437. doi: 10.3934/dcds.2011.29.417

Necessary optimality conditions for fractional difference problems of the calculus of variations

1. 

Department of Mathematics, ESTGV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal

2. 

Faculty of Engineering and Natural Sciences, Lusophone University of Humanities and Technologies, 1749-024 Lisbon, Portugal

3. 

Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Received  May 2009 Revised  March 2010 Published  October 2010

We introduce a discrete-time fractional calculus of variations. First and second order necessary optimality conditions are established. Examples illustrating the use of the new Euler--Lagrange and Legendre type conditions are given. They show that the solutions of the fractional problems coincide with the solutions of the corresponding non-fractional variational problems when the order of the discrete derivatives is an integer value.
Citation: Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417
References:
[1]

O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems,, J. Math. Anal. Appl., 272 (2002), 368.  doi: doi:10.1016/S0022-247X(02)00180-4.  Google Scholar

[2]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems,, Nonlinear Dynam., 38 (2004), 323.  doi: doi:10.1007/s11071-004-3764-6.  Google Scholar

[3]

O. P. Agrawal, Fractional variational calculus and the transversality conditions,, J. Phys. A, 39 (2006), 10375.  doi: doi:10.1088/0305-4470/39/33/008.  Google Scholar

[4]

O. P. Agrawal, A general finite element formulation for fractional variational problems,, J. Math. Anal. Appl., 337 (2008), 1.  doi: doi:10.1016/j.jmaa.2007.03.105.  Google Scholar

[5]

O. P. Agrawal and D. Baleanu, A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems,, J. Vib. Control, 13 (2007), 1269.  doi: doi:10.1177/1077546307077467.  Google Scholar

[6]

E. Akin, Cauchy functions for dynamic equations on a measure chain,, J. Math. Anal. Appl., 267 (2002), 97.  doi: doi:10.1006/jmaa.2001.7753.  Google Scholar

[7]

R. Almeida, A. B. Malinowska and D. F. M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string,, J. Math. Phys., 51 (2010).  doi: doi:10.1063/1.3319559.  Google Scholar

[8]

R. Almeida and D. F. M. Torres, Calculus of variations with fractional derivatives and fractional integrals,, Appl. Math. Lett., 22 (2009), 1816.  doi: doi:10.1016/j.aml.2009.07.002.  Google Scholar

[9]

F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus,, Int. J. Difference Equ., 2 (2007), 165.  doi: doi:10.1090/S0002-9939-08-09626-3.  Google Scholar

[10]

F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus,, Proc. Amer. Math. Soc., 137 (2009), 981.  doi: doi:10.1177/1077546308088565.  Google Scholar

[11]

D. Baleanu, O. Defterli and O. P. Agrawal, A central difference numerical scheme for fractional optimal control problems,, J. Vib. Control, 15 (2009), 583.   Google Scholar

[12]

M. Bohner, Calculus of variations on time scales,, Dynam. Systems Appl., 13 (2004), 339.   Google Scholar

[13]

R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order $(\alpha,\beta)$,, Math. Meth. Appl. Sci., 30 (2007), 1931.  doi: doi:10.1002/mma.879.  Google Scholar

[14]

R. A. C. Ferreira and D. F. M. Torres, Higher-order calculus of variations on time scales,, in, (2008), 149.  doi: doi:10.1007/978-3-540-69532-5_9.  Google Scholar

[15]

G. S. F. Frederico and D. F. M. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations,, J. Math. Anal. Appl., 334 (2007), 834.  doi: doi:10.1016/j.jmaa.2007.01.013.  Google Scholar

[16]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory,, Nonlinear Dynam., 53 (2008), 215.  doi: doi:10.1007/s11071-007-9309-z.  Google Scholar

[17]

R. Hilscher and V. Zeidan, Nonnegativity of a discrete quadratic functional in terms of the (strengthened) Legendre and Jacobi conditions,, Comput. Math. Appl., 45 (2003), 1369.  doi: doi:10.1016/S0898-1221(03)00109-3.  Google Scholar

[18]

R. Hilscher and V. Zeidan, Nonnegativity and positivity of quadratic functionals in discrete calculus of variations: Survey,, J. Difference Equ. Appl., 11 (2005), 857.  doi: doi:10.1080/10236190500137454.  Google Scholar

[19]

W. G. Kelley and A. C. Peterson, "Difference Equations,", Academic Press, (1991).   Google Scholar

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, "Theory and Applications of Fractional Differential Equations,", Elsevier, (2006).   Google Scholar

[21]

A. B. Malinowska and D. F. M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative,, Comput. Math. Appl., 59 (2010), 3110.  doi: doi:10.1016/j.camwa.2010.02.032.  Google Scholar

[22]

K. S. Miller and B. Ross, Fractional difference calculus,, in, (1989), 139.   Google Scholar

[23]

K. S. Miller and B. Ross, "An Introduction to the Fractional Calculus and Fractional Differential Equations,", John Wiley and Sons, (1993).   Google Scholar

[24]

M. D. Ortigueira, Fractional central differences and derivatives,, J. Vib. Control, 14 (2008), 1255.  doi: doi:10.1177/1077546307087453.  Google Scholar

[25]

M. D. Ortigueira and A. G. Batista, A fractional linear system view of the fractional Brownian motion,, Nonlinear Dynam., 38 (2004), 295.  doi: doi:10.1007/s11071-004-3762-8.  Google Scholar

[26]

F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics,, Phys. Rev. E, 53 (1996), 1890.  doi: doi:10.1103/PhysRevE.53.1890.  Google Scholar

[27]

S. G. Samko, A. A. Kilbas and O. I. Marichev, "Fractional Integrals and Derivatives,", Translated from the 1987 Russian original, (1987).   Google Scholar

[28]

M. F. Silva, J. A. Tenreiro Machado and R. S. Barbosa, Using fractional derivatives in joint control of hexapod robots,, J. Vib. Control, 14 (2008), 1473.  doi: doi:10.1177/1077546307087436.  Google Scholar

show all references

References:
[1]

O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems,, J. Math. Anal. Appl., 272 (2002), 368.  doi: doi:10.1016/S0022-247X(02)00180-4.  Google Scholar

[2]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems,, Nonlinear Dynam., 38 (2004), 323.  doi: doi:10.1007/s11071-004-3764-6.  Google Scholar

[3]

O. P. Agrawal, Fractional variational calculus and the transversality conditions,, J. Phys. A, 39 (2006), 10375.  doi: doi:10.1088/0305-4470/39/33/008.  Google Scholar

[4]

O. P. Agrawal, A general finite element formulation for fractional variational problems,, J. Math. Anal. Appl., 337 (2008), 1.  doi: doi:10.1016/j.jmaa.2007.03.105.  Google Scholar

[5]

O. P. Agrawal and D. Baleanu, A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems,, J. Vib. Control, 13 (2007), 1269.  doi: doi:10.1177/1077546307077467.  Google Scholar

[6]

E. Akin, Cauchy functions for dynamic equations on a measure chain,, J. Math. Anal. Appl., 267 (2002), 97.  doi: doi:10.1006/jmaa.2001.7753.  Google Scholar

[7]

R. Almeida, A. B. Malinowska and D. F. M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string,, J. Math. Phys., 51 (2010).  doi: doi:10.1063/1.3319559.  Google Scholar

[8]

R. Almeida and D. F. M. Torres, Calculus of variations with fractional derivatives and fractional integrals,, Appl. Math. Lett., 22 (2009), 1816.  doi: doi:10.1016/j.aml.2009.07.002.  Google Scholar

[9]

F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus,, Int. J. Difference Equ., 2 (2007), 165.  doi: doi:10.1090/S0002-9939-08-09626-3.  Google Scholar

[10]

F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus,, Proc. Amer. Math. Soc., 137 (2009), 981.  doi: doi:10.1177/1077546308088565.  Google Scholar

[11]

D. Baleanu, O. Defterli and O. P. Agrawal, A central difference numerical scheme for fractional optimal control problems,, J. Vib. Control, 15 (2009), 583.   Google Scholar

[12]

M. Bohner, Calculus of variations on time scales,, Dynam. Systems Appl., 13 (2004), 339.   Google Scholar

[13]

R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order $(\alpha,\beta)$,, Math. Meth. Appl. Sci., 30 (2007), 1931.  doi: doi:10.1002/mma.879.  Google Scholar

[14]

R. A. C. Ferreira and D. F. M. Torres, Higher-order calculus of variations on time scales,, in, (2008), 149.  doi: doi:10.1007/978-3-540-69532-5_9.  Google Scholar

[15]

G. S. F. Frederico and D. F. M. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations,, J. Math. Anal. Appl., 334 (2007), 834.  doi: doi:10.1016/j.jmaa.2007.01.013.  Google Scholar

[16]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory,, Nonlinear Dynam., 53 (2008), 215.  doi: doi:10.1007/s11071-007-9309-z.  Google Scholar

[17]

R. Hilscher and V. Zeidan, Nonnegativity of a discrete quadratic functional in terms of the (strengthened) Legendre and Jacobi conditions,, Comput. Math. Appl., 45 (2003), 1369.  doi: doi:10.1016/S0898-1221(03)00109-3.  Google Scholar

[18]

R. Hilscher and V. Zeidan, Nonnegativity and positivity of quadratic functionals in discrete calculus of variations: Survey,, J. Difference Equ. Appl., 11 (2005), 857.  doi: doi:10.1080/10236190500137454.  Google Scholar

[19]

W. G. Kelley and A. C. Peterson, "Difference Equations,", Academic Press, (1991).   Google Scholar

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, "Theory and Applications of Fractional Differential Equations,", Elsevier, (2006).   Google Scholar

[21]

A. B. Malinowska and D. F. M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative,, Comput. Math. Appl., 59 (2010), 3110.  doi: doi:10.1016/j.camwa.2010.02.032.  Google Scholar

[22]

K. S. Miller and B. Ross, Fractional difference calculus,, in, (1989), 139.   Google Scholar

[23]

K. S. Miller and B. Ross, "An Introduction to the Fractional Calculus and Fractional Differential Equations,", John Wiley and Sons, (1993).   Google Scholar

[24]

M. D. Ortigueira, Fractional central differences and derivatives,, J. Vib. Control, 14 (2008), 1255.  doi: doi:10.1177/1077546307087453.  Google Scholar

[25]

M. D. Ortigueira and A. G. Batista, A fractional linear system view of the fractional Brownian motion,, Nonlinear Dynam., 38 (2004), 295.  doi: doi:10.1007/s11071-004-3762-8.  Google Scholar

[26]

F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics,, Phys. Rev. E, 53 (1996), 1890.  doi: doi:10.1103/PhysRevE.53.1890.  Google Scholar

[27]

S. G. Samko, A. A. Kilbas and O. I. Marichev, "Fractional Integrals and Derivatives,", Translated from the 1987 Russian original, (1987).   Google Scholar

[28]

M. F. Silva, J. A. Tenreiro Machado and R. S. Barbosa, Using fractional derivatives in joint control of hexapod robots,, J. Vib. Control, 14 (2008), 1473.  doi: doi:10.1177/1077546307087436.  Google Scholar

[1]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[2]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[3]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[4]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[5]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[6]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[7]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[8]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 539-560. doi: 10.3934/dcdss.2020030

[9]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[10]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[11]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[12]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[13]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[14]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[15]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[16]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[17]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[18]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[19]

Xavier Ros-Oton, Joaquim Serra. Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2131-2150. doi: 10.3934/dcds.2015.35.2131

[20]

Thabet Abdeljawad. Fractional operators with boundary points dependent kernels and integration by parts. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 351-375. doi: 10.3934/dcdss.2020020

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (42)

[Back to Top]