• Previous Article
    The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives
  • DCDS Home
  • This Issue
  • Next Article
    Existence of minimizers for nonautonomous highly discontinuous scalar multiple integrals with pointwise constrained gradients
April  2011, 29(2): 453-466. doi: 10.3934/dcds.2011.29.453

Semiconcavity of the value function for a class of differential inclusions

1. 

Dipartimento di Matematica, Via della Ricerca Scientifica 1, Università di Roma 'Tor Vergata’, 00133 Roma, Italy

2. 

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918, United States

Received  September 2009 Revised  March 2010 Published  October 2010

We provide intrinsic sufficient conditions on a multifunction $F$ and endpoint data φ so that the value function associated to the Mayer problem is semiconcave.
Citation: Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453
References:
[1]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Birkhäuser, (1990).   Google Scholar

[2]

P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory,, SIAM J. Control Optim., 29 (1991), 1322.  doi: doi:10.1137/0329068.  Google Scholar

[3]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,", Birkhäuser, (2004).   Google Scholar

[4]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Wiley, (1983).   Google Scholar

[5]

F. H. Clarke, "Necessary Conditions in Dynamic Optimization,", Memoir of the American Mathematical Society, 816 (2005).   Google Scholar

[6]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, "Nonsmooth Analysis and Control Theory,", Springer, (1998).   Google Scholar

[7]

A. Ornelas, Parametrization of Carathéodory multifunctions,, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33.   Google Scholar

[8]

C. Knuckles and P. R. Wolenski, $C^1$ selections of multifunctions in one dimension,, Real Analysis Exchange, 22 (1997), 655.   Google Scholar

[9]

A. Pliś, Accessible sets in control theory,, in, (1975), 646.   Google Scholar

[10]

R. T. Rockafellar and R. Wets, "Variational Analysis,", Springer-Verlag, (1998).  doi: doi:10.1007/978-3-642-02431-3.  Google Scholar

show all references

References:
[1]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Birkhäuser, (1990).   Google Scholar

[2]

P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory,, SIAM J. Control Optim., 29 (1991), 1322.  doi: doi:10.1137/0329068.  Google Scholar

[3]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,", Birkhäuser, (2004).   Google Scholar

[4]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Wiley, (1983).   Google Scholar

[5]

F. H. Clarke, "Necessary Conditions in Dynamic Optimization,", Memoir of the American Mathematical Society, 816 (2005).   Google Scholar

[6]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, "Nonsmooth Analysis and Control Theory,", Springer, (1998).   Google Scholar

[7]

A. Ornelas, Parametrization of Carathéodory multifunctions,, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33.   Google Scholar

[8]

C. Knuckles and P. R. Wolenski, $C^1$ selections of multifunctions in one dimension,, Real Analysis Exchange, 22 (1997), 655.   Google Scholar

[9]

A. Pliś, Accessible sets in control theory,, in, (1975), 646.   Google Scholar

[10]

R. T. Rockafellar and R. Wets, "Variational Analysis,", Springer-Verlag, (1998).  doi: doi:10.1007/978-3-642-02431-3.  Google Scholar

[1]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[2]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[3]

Maciej Smołka. Asymptotic behaviour of optimal solutions of control problems governed by inclusions. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 641-652. doi: 10.3934/dcds.1998.4.641

[4]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[5]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[6]

Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066

[7]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[8]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[9]

Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365

[10]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[11]

Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467

[12]

Bavo Langerock. Optimal control problems with variable endpoints. Conference Publications, 2003, 2003 (Special) : 507-516. doi: 10.3934/proc.2003.2003.507

[13]

Alberto Bressan, Yunho Hong. Optimal control problems on stratified domains. Networks & Heterogeneous Media, 2007, 2 (2) : 313-331. doi: 10.3934/nhm.2007.2.313

[14]

M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure & Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743

[15]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[16]

T. Zolezzi. Extended wellposedness of optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 547-553. doi: 10.3934/dcds.1995.1.547

[17]

Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618

[18]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

[19]

Abdelkader Boucherif. Nonlocal problems for parabolic inclusions. Conference Publications, 2009, 2009 (Special) : 82-91. doi: 10.3934/proc.2009.2009.82

[20]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]