-
Previous Article
The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives
- DCDS Home
- This Issue
-
Next Article
Existence of minimizers for nonautonomous highly discontinuous scalar multiple integrals with pointwise constrained gradients
Semiconcavity of the value function for a class of differential inclusions
1. | Dipartimento di Matematica, Via della Ricerca Scientifica 1, Università di Roma 'Tor Vergata’, 00133 Roma, Italy |
2. | Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918, United States |
References:
[1] |
J.-P. Aubin and H. Frankowska, "Set-Valued Analysis," Birkhäuser, Boston, 1990. |
[2] |
P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory, SIAM J. Control Optim., 29 (1991), 1322-1347.
doi: doi:10.1137/0329068. |
[3] |
P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control," Birkhäuser, Boston, 2004. |
[4] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Wiley, New York, 1983. |
[5] |
F. H. Clarke, "Necessary Conditions in Dynamic Optimization," Memoir of the American Mathematical Society, 816, 2005. |
[6] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, "Nonsmooth Analysis and Control Theory," Springer, New York, 1998. |
[7] |
A. Ornelas, Parametrization of Carathéodory multifunctions, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33-44. |
[8] |
C. Knuckles and P. R. Wolenski, $C^1$ selections of multifunctions in one dimension, Real Analysis Exchange, 22 (1997), 655-676. |
[9] |
A. Pliś, Accessible sets in control theory, in "International Conference on Differential Equations" (Los Angeles, 1974), Academic Press, (1975), 646-650. |
[10] |
R. T. Rockafellar and R. Wets, "Variational Analysis," Springer-Verlag, Berlin Heidelberg, 1998.
doi: doi:10.1007/978-3-642-02431-3. |
show all references
References:
[1] |
J.-P. Aubin and H. Frankowska, "Set-Valued Analysis," Birkhäuser, Boston, 1990. |
[2] |
P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory, SIAM J. Control Optim., 29 (1991), 1322-1347.
doi: doi:10.1137/0329068. |
[3] |
P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control," Birkhäuser, Boston, 2004. |
[4] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Wiley, New York, 1983. |
[5] |
F. H. Clarke, "Necessary Conditions in Dynamic Optimization," Memoir of the American Mathematical Society, 816, 2005. |
[6] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, "Nonsmooth Analysis and Control Theory," Springer, New York, 1998. |
[7] |
A. Ornelas, Parametrization of Carathéodory multifunctions, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33-44. |
[8] |
C. Knuckles and P. R. Wolenski, $C^1$ selections of multifunctions in one dimension, Real Analysis Exchange, 22 (1997), 655-676. |
[9] |
A. Pliś, Accessible sets in control theory, in "International Conference on Differential Equations" (Los Angeles, 1974), Academic Press, (1975), 646-650. |
[10] |
R. T. Rockafellar and R. Wets, "Variational Analysis," Springer-Verlag, Berlin Heidelberg, 1998.
doi: doi:10.1007/978-3-642-02431-3. |
[1] |
Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455 |
[2] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations and Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[3] |
Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations and Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028 |
[4] |
Maciej Smołka. Asymptotic behaviour of optimal solutions of control problems governed by inclusions. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 641-652. doi: 10.3934/dcds.1998.4.641 |
[5] |
Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116 |
[6] |
Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations and Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024 |
[7] |
Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2503-2520. doi: 10.3934/jimo.2019066 |
[8] |
Doria Affane, Mustapha Fateh Yarou. Well-posed control problems related to second-order differential inclusions. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021042 |
[9] |
Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989 |
[10] |
Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control and Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036 |
[11] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations and Control Theory, 2022, 11 (1) : 177-197. doi: 10.3934/eect.2020107 |
[12] |
Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365 |
[13] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control and Related Fields, 2021, 11 (4) : 935-964. doi: 10.3934/mcrf.2020053 |
[14] |
Evelyn Herberg, Michael Hinze. Variational discretization of one-dimensional elliptic optimal control problems with BV functions based on the mixed formulation. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022013 |
[15] |
Jacson Simsen, Mariza Stefanello Simsen, José Valero. Convergence of nonautonomous multivalued problems with large diffusion to ordinary differential inclusions. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2347-2368. doi: 10.3934/cpaa.2020102 |
[16] |
Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control and Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013 |
[17] |
Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467 |
[18] |
Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020 |
[19] |
Bavo Langerock. Optimal control problems with variable endpoints. Conference Publications, 2003, 2003 (Special) : 507-516. doi: 10.3934/proc.2003.2003.507 |
[20] |
Alberto Bressan, Yunho Hong. Optimal control problems on stratified domains. Networks and Heterogeneous Media, 2007, 2 (2) : 313-331. doi: 10.3934/nhm.2007.2.313 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]