April  2011, 29(2): 505-522. doi: 10.3934/dcds.2011.29.505

Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints

1. 

Faculdade de Engenharia da Universidade do Porto, Department of Electrical Engineering and Computers, Porto, Portugal

2. 

Department of Mathematics and Computer Science, Penn State Harrisburg, Middletown, PA 17057, United States

Received  September 2009 Revised  April 2010 Published  October 2010

In this paper we report conditions ensuring Lipschitz continuity of optimal control and Lagrange multipliers for a dynamic optimization problem with inequality pure state and mixed state-control constraints.
Citation: Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505
References:
[1]

J. F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints,, Ann. I. H. Poincaré - Analyse Non Linéaire, 26 (2009), 561.   Google Scholar

[2]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer-Verlag, (2000).   Google Scholar

[3]

A. V. Dmitruk, Maximum principle for a general optimal control problem with state and regular mixed constraints,, Comp. Math. and Modeling, 4 (1993), 364.  doi: doi:10.1007/BF01128760.  Google Scholar

[4]

G. N. Galbraith and R. B. Vinter, Lipschitz Continuiuty of Optimal Controls for State Constrained Problems,, SIAM J. Control and Optimization, 42 (2003), 1727.  doi: doi:10.1137/S0363012902404711.  Google Scholar

[5]

W. W. Hager, Lipschitz continuity for constrained processes,, SIAM J. Control and Optimization, 17 (1979), 321.  doi: doi:10.1137/0317026.  Google Scholar

[6]

K. Malanowski, On the regularity of solutions to optimal control problems for systems linear with respect to control variable,, Arch. Auto. i Telemech., 23 (1978), 227.   Google Scholar

[7]

K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems,, Optimization, 52 (2003), 75.  doi: doi:10.1080/0233193021000058940.  Google Scholar

[8]

A. A. Milyutin, A. V. Dmitruk and N. P. Osmolovsky, "Maximum Principle in Optimal Control" (Russian),, Moscow State University Press, (2004).   Google Scholar

[9]

S. M. Robinson and R. H. Day, A sufficient condition for continuity of optimal sets in mathematical programming,, J. Math. Anal. Appl., 45 (1974), 506.  doi: doi:10.1016/0022-247X(74)90089-4.  Google Scholar

[10]

S. M. Robinson, Strongly regular generalized equations,, Mathematics of Operations Research, 5 (1980), 43.  doi: doi:10.1287/moor.5.1.43.  Google Scholar

[11]

I. Shvartsman and R. B. Vinter, Regularity properties of optimal controls for state constrained problems with time-varying control constraints,, Nonlinear Analysis: Theory, 65 (2006), 448.   Google Scholar

[12]

R. B. Vinter, "Optimal Control,", Birkhäuser, (2000).   Google Scholar

show all references

References:
[1]

J. F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints,, Ann. I. H. Poincaré - Analyse Non Linéaire, 26 (2009), 561.   Google Scholar

[2]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer-Verlag, (2000).   Google Scholar

[3]

A. V. Dmitruk, Maximum principle for a general optimal control problem with state and regular mixed constraints,, Comp. Math. and Modeling, 4 (1993), 364.  doi: doi:10.1007/BF01128760.  Google Scholar

[4]

G. N. Galbraith and R. B. Vinter, Lipschitz Continuiuty of Optimal Controls for State Constrained Problems,, SIAM J. Control and Optimization, 42 (2003), 1727.  doi: doi:10.1137/S0363012902404711.  Google Scholar

[5]

W. W. Hager, Lipschitz continuity for constrained processes,, SIAM J. Control and Optimization, 17 (1979), 321.  doi: doi:10.1137/0317026.  Google Scholar

[6]

K. Malanowski, On the regularity of solutions to optimal control problems for systems linear with respect to control variable,, Arch. Auto. i Telemech., 23 (1978), 227.   Google Scholar

[7]

K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems,, Optimization, 52 (2003), 75.  doi: doi:10.1080/0233193021000058940.  Google Scholar

[8]

A. A. Milyutin, A. V. Dmitruk and N. P. Osmolovsky, "Maximum Principle in Optimal Control" (Russian),, Moscow State University Press, (2004).   Google Scholar

[9]

S. M. Robinson and R. H. Day, A sufficient condition for continuity of optimal sets in mathematical programming,, J. Math. Anal. Appl., 45 (1974), 506.  doi: doi:10.1016/0022-247X(74)90089-4.  Google Scholar

[10]

S. M. Robinson, Strongly regular generalized equations,, Mathematics of Operations Research, 5 (1980), 43.  doi: doi:10.1287/moor.5.1.43.  Google Scholar

[11]

I. Shvartsman and R. B. Vinter, Regularity properties of optimal controls for state constrained problems with time-varying control constraints,, Nonlinear Analysis: Theory, 65 (2006), 448.   Google Scholar

[12]

R. B. Vinter, "Optimal Control,", Birkhäuser, (2000).   Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[7]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[12]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[15]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[16]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[20]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]