• Previous Article
    Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints
  • DCDS Home
  • This Issue
  • Next Article
    Regularity of minimizers for second order variational problems in one independent variable
April  2011, 29(2): 523-545. doi: 10.3934/dcds.2011.29.523

Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints

1. 

Central Economics and Mathematics Institute of the Russian Academy of Sciences, Nakhimovskii prospekt, 47, Moscow 117418, Russian Federation

2. 

Moscow State University, Faculty of Computational Mathematics and Cybernetics, GSP-2, Leninskie Gory, VMK MGU, Moscow 119992, Russian Federation

Received  August 2009 Revised  April 2010 Published  October 2010

We consider a general optimal control problem with intermediate and mixed constraints. Using a natural transformation (replication of the state and control variables), this problem is reduced to a standard optimal control problem with mixed constraints, which makes it possible to obtain quadratic order conditions for an "extended" weak minimum. The conditions obtained are applied to the problem of light refraction.
Citation: Andrei V. Dmitruk, Alexander M. Kaganovich. Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 523-545. doi: 10.3934/dcds.2011.29.523
References:
[1]

A. V. Arutyunov and A. I. Okoulevitch, Necessary optimality conditions for optimal control problems with intermediate constraints,, J. of Dynamical and Control Systems, 4 (1998), 49. doi: oi:10.1023/A:1022820900022. Google Scholar

[2]

D. Augustin and H. Maurer, Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems,, Control and Cybernetics, 29 (2000), 11. Google Scholar

[3]

G. A. Bliss, "Lectures on the Calculus of Variations,", The Univ. of Chicago Press, (1946). Google Scholar

[4]

F. H. Clarke and R. B. Vinter, Optimal multiprocesses,, SIAM J. on Control and Optimization, 27 (1989), 1072. doi: doi:10.1137/0327057. Google Scholar

[5]

C. H. Denbow, "A Generalized Form of the Problem of Bolza,", Dissertation, (1937). Google Scholar

[6]

A. V. Dmitruk, Jacobi type conditions for singular extremals,, Control and Cybernetics, 37 (2008), 285. Google Scholar

[7]

A. V. Dmitruk and A. M. Kaganovich, Maximum principle for optimal control problems with intermediate constraints,, in, (2008), 101. Google Scholar

[8]

A. V. Dmitruk and A. M. Kaganovich, The hybrid maximum principle is a consequence of Pontryagin maximum principle,, Systems and Control Letters, 57 (2008), 964. doi: doi:10.1016/j.sysconle.2008.05.006. Google Scholar

[9]

A. Ja. Dubovitskii and A. A. Milyutin, Extremal problems in the presence of constraints,, USSR Comput. Math. and Math. Physics, 5 (1965), 395. Google Scholar

[10]

A. D. Ioffe and V. M. Tikhomirov, "Theory of Extremal Problems,", Nauka, (1974). Google Scholar

[11]

A. M. Kaganovich, Quadratic weak minimum conditions for optimal control problems with intermediate constraints,, J. of Math. Sciences, 165 (2010), 710. doi: doi:10.1007/s10958-010-9836-x. Google Scholar

[12]

C. Y. Kaya and J. L. Noakes, Computational method for time-optimal switching control,, JOTA, 117 (2003), 69. doi: doi:10.1023/A:1023600422807. Google Scholar

[13]

A. A. Milyutin, A. V. Dmitruk and N. P. Osmolovskii, "Maximum Principle in Optimal Control,", Mech-Math. Faculty of MSU, (2004). Google Scholar

[14]

A. A. Milyutin and N. P. Osmolovskii, "Calculus of Variations and Optimal Control,", American Math. Society, (1998). Google Scholar

[15]

N. P. Osmolovskii, Second-order conditions for broken extremal,, in, 411 (2000), 198. Google Scholar

[16]

Yu. M. Volin and G. M. Ostrovskii, Maximum principle for discontinuous systems and its application to problems with state constraints,, Izvestia Vuzov. Radiofizika, 12 (1969), 1609. Google Scholar

[17]

X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parametrization of the swithing instants,, IEEE Trans. Automatic Control, 49 (2004), 2. doi: doi:10.1109/TAC.2003.821417. Google Scholar

show all references

References:
[1]

A. V. Arutyunov and A. I. Okoulevitch, Necessary optimality conditions for optimal control problems with intermediate constraints,, J. of Dynamical and Control Systems, 4 (1998), 49. doi: oi:10.1023/A:1022820900022. Google Scholar

[2]

D. Augustin and H. Maurer, Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems,, Control and Cybernetics, 29 (2000), 11. Google Scholar

[3]

G. A. Bliss, "Lectures on the Calculus of Variations,", The Univ. of Chicago Press, (1946). Google Scholar

[4]

F. H. Clarke and R. B. Vinter, Optimal multiprocesses,, SIAM J. on Control and Optimization, 27 (1989), 1072. doi: doi:10.1137/0327057. Google Scholar

[5]

C. H. Denbow, "A Generalized Form of the Problem of Bolza,", Dissertation, (1937). Google Scholar

[6]

A. V. Dmitruk, Jacobi type conditions for singular extremals,, Control and Cybernetics, 37 (2008), 285. Google Scholar

[7]

A. V. Dmitruk and A. M. Kaganovich, Maximum principle for optimal control problems with intermediate constraints,, in, (2008), 101. Google Scholar

[8]

A. V. Dmitruk and A. M. Kaganovich, The hybrid maximum principle is a consequence of Pontryagin maximum principle,, Systems and Control Letters, 57 (2008), 964. doi: doi:10.1016/j.sysconle.2008.05.006. Google Scholar

[9]

A. Ja. Dubovitskii and A. A. Milyutin, Extremal problems in the presence of constraints,, USSR Comput. Math. and Math. Physics, 5 (1965), 395. Google Scholar

[10]

A. D. Ioffe and V. M. Tikhomirov, "Theory of Extremal Problems,", Nauka, (1974). Google Scholar

[11]

A. M. Kaganovich, Quadratic weak minimum conditions for optimal control problems with intermediate constraints,, J. of Math. Sciences, 165 (2010), 710. doi: doi:10.1007/s10958-010-9836-x. Google Scholar

[12]

C. Y. Kaya and J. L. Noakes, Computational method for time-optimal switching control,, JOTA, 117 (2003), 69. doi: doi:10.1023/A:1023600422807. Google Scholar

[13]

A. A. Milyutin, A. V. Dmitruk and N. P. Osmolovskii, "Maximum Principle in Optimal Control,", Mech-Math. Faculty of MSU, (2004). Google Scholar

[14]

A. A. Milyutin and N. P. Osmolovskii, "Calculus of Variations and Optimal Control,", American Math. Society, (1998). Google Scholar

[15]

N. P. Osmolovskii, Second-order conditions for broken extremal,, in, 411 (2000), 198. Google Scholar

[16]

Yu. M. Volin and G. M. Ostrovskii, Maximum principle for discontinuous systems and its application to problems with state constraints,, Izvestia Vuzov. Radiofizika, 12 (1969), 1609. Google Scholar

[17]

X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parametrization of the swithing instants,, IEEE Trans. Automatic Control, 49 (2004), 2. doi: doi:10.1109/TAC.2003.821417. Google Scholar

[1]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[2]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[3]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[4]

J.-P. Raymond, F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 431-450. doi: 10.3934/dcds.2000.6.431

[5]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[6]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

[7]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[8]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[9]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[10]

J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341

[11]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[12]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[13]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[14]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[15]

Dmitry V. Zenkov, Anthony M. Bloch. Dynamics of generalized Euler tops with constraints. Conference Publications, 2001, 2001 (Special) : 398-405. doi: 10.3934/proc.2001.2001.398

[16]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[17]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[18]

Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503

[19]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[20]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]