Citation: |
[1] |
A. V. Sarychev and D. F. Torres, Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics, Appl. Math. Optim., 41 (2000), 237-254.doi: doi:10.1007/s002459911013. |
[2] |
D. R. Smith, "Variational Methods in Optimization," Prentice Hall, Englewood Cliffs, N.J., 1974. |
[3] |
F. H. Clarke, L. S. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory," Graduate Texts in Mathematics, vol. 178, Springer Verlag, New York, 1998. |
[4] |
F. H. Clarke, "Methods of Dynamic and Nonsmooth Optimization," Regional Conference Series in Applied Mathematics, SIAM Publications, PA, 1989. |
[5] |
F. H. Clarke, Necessary conditions in dynamic optimization, Memoirs of the Amer. Math. Soc., 816 (2005), 1-110. |
[6] |
F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., 289 (1985), 73-98. |
[7] |
F. H. Clarke and R. B. Vinter, A regularity theory for variational problems with higher order derivatives, Trans. Amer. Math. Soc., 320 (1990), 227-251.doi: doi:10.2307/2001759. |
[8] |
F. H. Clarke and R. B. Vinter, On the conditions under which the Euler equation or the Maximum principle hold, Appl. Math. Optim, 12 (1983), 73-79.doi: doi:10.1007/BF01449034. |
[9] |
L. Ambrosio, O. Ascenti and G. Butazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands, J. Math. An. Applic., 142 (1989), 301-316.doi: doi:10.1016/0022-247X(89)90001-2. |
[10] |
L. C. Young, "Lectures on the Calculus of Variations and Optimal Control Theory," Saunders, Philadelphia, 1969. |
[11] |
L. Tonelli, "Fondamenti di Calcolo delle Variazioni," vol. 1 and 2, Zanichelli, Bologna, 1921, 1923. |
[12] | |
[13] |
R. T. Rockafellar and R. J.-W. Wets, "Variational Analysis, Grundlehren der Mathematischen Wissenschaften," vol. 317, Springer Verlag, New York, 1998. |
[14] |
R. T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Advances in Math., 15 (1975), 312-333.doi: doi:10.1016/0001-8708(75)90140-1. |