• Previous Article
    On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems
  • DCDS Home
  • This Issue
  • Next Article
    Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints
April  2011, 29(2): 547-557. doi: 10.3934/dcds.2011.29.547

Regularity of minimizers for second order variational problems in one independent variable

1. 

Department of Electrical and Electronic Engineering, Imperial College London, SW7 2BT, United Kingdom, United Kingdom

Received  September 2009 Revised  March 2010 Published  October 2010

We consider autonomous, second order problems in the calculus of variations in one independent variable. For analogous first order problems it is known that, under standard hypotheses of existence theory and a local boundedness condition on the Lagrangian, minimizers over $W^{1,1}$ have bounded first derivatives ($W^{1,\infty}$ regularity prevails). For second order problems one might expect, by analogy, that minimizers would have bounded second derivatives ($W^{2,\infty}$ regularity) under the standard existence hypotheses $(HE)$ for second order problems, supplemented by a local boundedness condition. A counter-example, however, indicates that this is not the case. In earlier work, $W^{2, \infty}$ regularity has been established for these problems under $(HE)$ and additional 'integrability' hypotheses on derivatives of the Lagrangian, evaluated along the minimizer. We show that these additional hypotheses can be significantly reduced. The proof techniques employed depend on a combination of the application of a change of independent variable and of extensions to Tonelli regularity theory proved by Clarke and Vinter.
Citation: Christos Gavriel, Richard Vinter. Regularity of minimizers for second order variational problems in one independent variable. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 547-557. doi: 10.3934/dcds.2011.29.547
References:
[1]

A. V. Sarychev and D. F. Torres, Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics, Appl. Math. Optim., 41 (2000), 237-254. doi: doi:10.1007/s002459911013.  Google Scholar

[2]

D. R. Smith, "Variational Methods in Optimization," Prentice Hall, Englewood Cliffs, N.J., 1974.  Google Scholar

[3]

F. H. Clarke, L. S. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory," Graduate Texts in Mathematics, vol. 178, Springer Verlag, New York, 1998.  Google Scholar

[4]

F. H. Clarke, "Methods of Dynamic and Nonsmooth Optimization," Regional Conference Series in Applied Mathematics, SIAM Publications, PA, 1989.  Google Scholar

[5]

F. H. Clarke, Necessary conditions in dynamic optimization, Memoirs of the Amer. Math. Soc., 816 (2005), 1-110.  Google Scholar

[6]

F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., 289 (1985), 73-98.  Google Scholar

[7]

F. H. Clarke and R. B. Vinter, A regularity theory for variational problems with higher order derivatives, Trans. Amer. Math. Soc., 320 (1990), 227-251. doi: doi:10.2307/2001759.  Google Scholar

[8]

F. H. Clarke and R. B. Vinter, On the conditions under which the Euler equation or the Maximum principle hold, Appl. Math. Optim, 12 (1983), 73-79. doi: doi:10.1007/BF01449034.  Google Scholar

[9]

L. Ambrosio, O. Ascenti and G. Butazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands, J. Math. An. Applic., 142 (1989), 301-316. doi: doi:10.1016/0022-247X(89)90001-2.  Google Scholar

[10]

L. C. Young, "Lectures on the Calculus of Variations and Optimal Control Theory," Saunders, Philadelphia, 1969.  Google Scholar

[11]

L. Tonelli, "Fondamenti di Calcolo delle Variazioni," vol. 1 and 2, Zanichelli, Bologna, 1921, 1923. Google Scholar

[12]

R. B. Vinter, "Optimal Control," Birkhauser, Boston, 2000.  Google Scholar

[13]

R. T. Rockafellar and R. J.-W. Wets, "Variational Analysis, Grundlehren der Mathematischen Wissenschaften," vol. 317, Springer Verlag, New York, 1998. Google Scholar

[14]

R. T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Advances in Math., 15 (1975), 312-333. doi: doi:10.1016/0001-8708(75)90140-1.  Google Scholar

show all references

References:
[1]

A. V. Sarychev and D. F. Torres, Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics, Appl. Math. Optim., 41 (2000), 237-254. doi: doi:10.1007/s002459911013.  Google Scholar

[2]

D. R. Smith, "Variational Methods in Optimization," Prentice Hall, Englewood Cliffs, N.J., 1974.  Google Scholar

[3]

F. H. Clarke, L. S. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory," Graduate Texts in Mathematics, vol. 178, Springer Verlag, New York, 1998.  Google Scholar

[4]

F. H. Clarke, "Methods of Dynamic and Nonsmooth Optimization," Regional Conference Series in Applied Mathematics, SIAM Publications, PA, 1989.  Google Scholar

[5]

F. H. Clarke, Necessary conditions in dynamic optimization, Memoirs of the Amer. Math. Soc., 816 (2005), 1-110.  Google Scholar

[6]

F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., 289 (1985), 73-98.  Google Scholar

[7]

F. H. Clarke and R. B. Vinter, A regularity theory for variational problems with higher order derivatives, Trans. Amer. Math. Soc., 320 (1990), 227-251. doi: doi:10.2307/2001759.  Google Scholar

[8]

F. H. Clarke and R. B. Vinter, On the conditions under which the Euler equation or the Maximum principle hold, Appl. Math. Optim, 12 (1983), 73-79. doi: doi:10.1007/BF01449034.  Google Scholar

[9]

L. Ambrosio, O. Ascenti and G. Butazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands, J. Math. An. Applic., 142 (1989), 301-316. doi: doi:10.1016/0022-247X(89)90001-2.  Google Scholar

[10]

L. C. Young, "Lectures on the Calculus of Variations and Optimal Control Theory," Saunders, Philadelphia, 1969.  Google Scholar

[11]

L. Tonelli, "Fondamenti di Calcolo delle Variazioni," vol. 1 and 2, Zanichelli, Bologna, 1921, 1923. Google Scholar

[12]

R. B. Vinter, "Optimal Control," Birkhauser, Boston, 2000.  Google Scholar

[13]

R. T. Rockafellar and R. J.-W. Wets, "Variational Analysis, Grundlehren der Mathematischen Wissenschaften," vol. 317, Springer Verlag, New York, 1998. Google Scholar

[14]

R. T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Advances in Math., 15 (1975), 312-333. doi: doi:10.1016/0001-8708(75)90140-1.  Google Scholar

[1]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[2]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[3]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[4]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[5]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[6]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[7]

Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021012

[8]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[9]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[10]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[11]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[12]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[13]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[14]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[15]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267

[16]

Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control & Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018

[17]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

[18]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[19]

Teresa Isernia, Chiara Leone, Anna Verde. Partial regularity result for non-autonomous elliptic systems with general growth. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021160

[20]

Jacson Simsen, Mariza Stefanello Simsen. On asymptotically autonomous dynamics for multivalued evolution problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3557-3567. doi: 10.3934/dcdsb.2018278

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]