April  2011, 29(2): 559-575. doi: 10.3934/dcds.2011.29.559

On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems

1. 

CMAT e Departamento de Matemática e Aplicações, Universidade do Minho, 4800-058 Guimarães, Portugal

2. 

ISR-Porto, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal, Portugal

Received  September 2009 Revised  April 2010 Published  October 2010

We address necessary conditions of optimality (NCO), in the form of a maximum principle, for optimal control problems with state constraints. In particular, we are interested in the NCO that are strengthened to avoid the degeneracy phenomenon that occurs when the trajectory hits the boundary of the state constraint. In the literature on this subject, we can distinguish two types of constraint qualifications (CQ) under which the strengthened NCO can be applied: CQ involving the optimal control and CQ not involving it. Each one of these types of CQ has its own merits. The CQs involving the optimal control are not so easy to verify, but, are typically applicable to problems with less regularity on the data. In this article, we provide conditions under which the type of CQ involving the optimal control can be reduced to the other type. In this way, we also provide nondegenerate NCO that are valid under a different set of hypotheses.
Citation: Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559
References:
[1]

A. V. Arutyunov and S. M. Aseev, State constraints in optimal control. The degeneracy phenomenon, Systems Control Lett., 26 (1995), 267-273. doi: doi:10.1016/0167-6911(95)00021-Z.

[2]

A. V. Arutyunov and S. M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints, SIAM J. Control Optim., 35 (1997), 930-952. doi: doi:10.1137/S036301299426996X.

[3]

J. Abadie, On the Kuhn-Tucker theorem, in "Nonlinear Programming" (J. Abadie, ed.), North Holland, Amsterdam, 1967, 21-56.

[4]

A. V. Arutyunov, On necessary conditions for optimality in a problem with phase constraints, Dokl. Akad. Nauk SSSR, 280 (1985), 1033-1037.

[5]

Aram V. Arutyunov, "Optimality Conditions. Abnormal and Degenerate Problems," Mathematics and its Applications, vol. 526, Kluwer Academic Publishers, Dordrecht, 2000, Translated from the Russian by S. A. Vakhrameev.

[6]

A. V. Arutyunov and N. T. Tynyanskiy, The maximum principle in a problem with phase constraints, Izv. Akad. Nauk SSSR Tekhn. Kibernet, (1984), 60-68, 235.

[7]

P. Bettiol and H. Frankowska, Normality of the maximum principle for nonconvex constrained Bolza problems, J. Differential Equations, 243 (2007), 256-269. doi: doi:10.1016/j.jde.2007.05.005.

[8]

A. Cernea and H. Frankowska, A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim., 44 (2005), 673-703 (electronic). doi: doi:10.1137/S0363012903430585.

[9]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983, A Wiley-Interscience Publication.

[10]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory," Graduate Texts in Mathematics, vol. 178, Springer-Verlag, New York, 1998.

[11]

A. Ya. Dubovitskii and A. A. Milyutin, Extremum problems under constraints, Dokl. Akad. Nauk SSSR, 149 (1963), 759-762.

[12]

M. d. R. de Pinho, R. B. Vinter and H. Zheng, A maximum principle for optimal control problems with mixed constraints, IMA J. Math. Control Inform., 18 (2001), 189-205. doi: doi:10.1093/imamci/18.2.189.

[13]

M. M. A. Ferreira, F. A. C. C. Fontes and R. B. Vinter, Nondegenerate necessary conditions for nonconvex optimal control problems with state constraints, J. Math. Anal. Appl., 233 (1999), 116-129. doi: doi:10.1006/jmaa.1999.6270.

[14]

F. A. C. C. Fontes, "Optimisation-based Control of Constrained Nonlinear Systems," Ph.D. thesis, Imperial College of Science Technology and Medicine, University of London, London SW7 2BY, U.K., 1999.

[15]

F. A. C. C. Fontes, "Normality in the Necessary Conditions of Optimality for Control Problems with State Constraints," Proceedings of the IASTED Conference on Control and Applications (Cancun, Mexico), 2000.

[16]

F. A. C. C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers, Systems Control Lett., 42 (2001), 127-143. doi: doi:10.1016/S0167-6911(00)00084-0.

[17]

F. A. C. C. Fontes, Nondegenerate necessary conditions of optimality for control problems with state constraints, in "Nonlinear Control Systems" (A. B. Kurzhanski and A. L. Fradkov, eds.), (2002), 45-50.

[18]

M. M. A. Ferreira and R. B. Vinter, When is the maximum principle for state constrained problems nondegenerate?, J. Math. Anal. Appl., 187 (1994), 438-467. doi: doi:10.1006/jmaa.1994.1366.

[19]

F. John, "Extremum Problems as Inequalities as Subsidiary Conditions," Studies and Essays: Courant Anniversary Volume (K. O. Friedrichs, O. E. Neugebauer and J. J. Stoker, eds.), Interscience Publishers, New York, 1948.

[20]

H. W. Kuhn and A. W. Tucker, Nonlinear programming, in "Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability" (J. Neyman, ed.), University of California Press, Berkeley, 1951, 481-492.

[21]

K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems, Optimization, 52 (2003), 75-91. doi: doi:10.1080/0233193021000058940.

[22]

O. L. Mangasarian, "Nonlinear Programming," McGraw-Hill, New York, 1969.

[23]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation. I," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer-Verlag, Berlin, 2006, Basic theory.

[24]

L. W. Neustadt, A general theory of extremals, Journal of Computer and System Sciences, 3 (1969), 57-92.

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Wiley Interscience, New York, 1962.

[26]

F. Rampazzo and R. B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control, IMA J. Math. Control Inform., 16 (1999), 335-351. doi: doi:10.1093/imamci/16.4.335.

[27]

F. Rampazzo and R. Vinter, Degenerate optimal control problems with state constraints, SIAM J. Control Optim., 39 (2000), 989-1007 (electronic). doi: doi:10.1137/S0363012998340223.

[28]

R. Vinter, "Optimal Control," Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 2000.

[29]

R. B. Vinter and G. Pappas, A maximum principle for nonsmooth optimal-control problems with state constraints, J. Math. Anal. Appl., 89 (1982), 212-232. doi: doi:10.1016/0022-247X(82)90099-3.

[30]

R. B. Vinter and H. Zheng, Necessary conditions for optimal control problems with state constraints, Trans. Amer. Math. Soc., 350 (1998), 1181-1204. doi: doi:10.1090/S0002-9947-98-02129-1.

[31]

J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972.

show all references

References:
[1]

A. V. Arutyunov and S. M. Aseev, State constraints in optimal control. The degeneracy phenomenon, Systems Control Lett., 26 (1995), 267-273. doi: doi:10.1016/0167-6911(95)00021-Z.

[2]

A. V. Arutyunov and S. M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints, SIAM J. Control Optim., 35 (1997), 930-952. doi: doi:10.1137/S036301299426996X.

[3]

J. Abadie, On the Kuhn-Tucker theorem, in "Nonlinear Programming" (J. Abadie, ed.), North Holland, Amsterdam, 1967, 21-56.

[4]

A. V. Arutyunov, On necessary conditions for optimality in a problem with phase constraints, Dokl. Akad. Nauk SSSR, 280 (1985), 1033-1037.

[5]

Aram V. Arutyunov, "Optimality Conditions. Abnormal and Degenerate Problems," Mathematics and its Applications, vol. 526, Kluwer Academic Publishers, Dordrecht, 2000, Translated from the Russian by S. A. Vakhrameev.

[6]

A. V. Arutyunov and N. T. Tynyanskiy, The maximum principle in a problem with phase constraints, Izv. Akad. Nauk SSSR Tekhn. Kibernet, (1984), 60-68, 235.

[7]

P. Bettiol and H. Frankowska, Normality of the maximum principle for nonconvex constrained Bolza problems, J. Differential Equations, 243 (2007), 256-269. doi: doi:10.1016/j.jde.2007.05.005.

[8]

A. Cernea and H. Frankowska, A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim., 44 (2005), 673-703 (electronic). doi: doi:10.1137/S0363012903430585.

[9]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983, A Wiley-Interscience Publication.

[10]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory," Graduate Texts in Mathematics, vol. 178, Springer-Verlag, New York, 1998.

[11]

A. Ya. Dubovitskii and A. A. Milyutin, Extremum problems under constraints, Dokl. Akad. Nauk SSSR, 149 (1963), 759-762.

[12]

M. d. R. de Pinho, R. B. Vinter and H. Zheng, A maximum principle for optimal control problems with mixed constraints, IMA J. Math. Control Inform., 18 (2001), 189-205. doi: doi:10.1093/imamci/18.2.189.

[13]

M. M. A. Ferreira, F. A. C. C. Fontes and R. B. Vinter, Nondegenerate necessary conditions for nonconvex optimal control problems with state constraints, J. Math. Anal. Appl., 233 (1999), 116-129. doi: doi:10.1006/jmaa.1999.6270.

[14]

F. A. C. C. Fontes, "Optimisation-based Control of Constrained Nonlinear Systems," Ph.D. thesis, Imperial College of Science Technology and Medicine, University of London, London SW7 2BY, U.K., 1999.

[15]

F. A. C. C. Fontes, "Normality in the Necessary Conditions of Optimality for Control Problems with State Constraints," Proceedings of the IASTED Conference on Control and Applications (Cancun, Mexico), 2000.

[16]

F. A. C. C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers, Systems Control Lett., 42 (2001), 127-143. doi: doi:10.1016/S0167-6911(00)00084-0.

[17]

F. A. C. C. Fontes, Nondegenerate necessary conditions of optimality for control problems with state constraints, in "Nonlinear Control Systems" (A. B. Kurzhanski and A. L. Fradkov, eds.), (2002), 45-50.

[18]

M. M. A. Ferreira and R. B. Vinter, When is the maximum principle for state constrained problems nondegenerate?, J. Math. Anal. Appl., 187 (1994), 438-467. doi: doi:10.1006/jmaa.1994.1366.

[19]

F. John, "Extremum Problems as Inequalities as Subsidiary Conditions," Studies and Essays: Courant Anniversary Volume (K. O. Friedrichs, O. E. Neugebauer and J. J. Stoker, eds.), Interscience Publishers, New York, 1948.

[20]

H. W. Kuhn and A. W. Tucker, Nonlinear programming, in "Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability" (J. Neyman, ed.), University of California Press, Berkeley, 1951, 481-492.

[21]

K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems, Optimization, 52 (2003), 75-91. doi: doi:10.1080/0233193021000058940.

[22]

O. L. Mangasarian, "Nonlinear Programming," McGraw-Hill, New York, 1969.

[23]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation. I," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer-Verlag, Berlin, 2006, Basic theory.

[24]

L. W. Neustadt, A general theory of extremals, Journal of Computer and System Sciences, 3 (1969), 57-92.

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Wiley Interscience, New York, 1962.

[26]

F. Rampazzo and R. B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control, IMA J. Math. Control Inform., 16 (1999), 335-351. doi: doi:10.1093/imamci/16.4.335.

[27]

F. Rampazzo and R. Vinter, Degenerate optimal control problems with state constraints, SIAM J. Control Optim., 39 (2000), 989-1007 (electronic). doi: doi:10.1137/S0363012998340223.

[28]

R. Vinter, "Optimal Control," Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 2000.

[29]

R. B. Vinter and G. Pappas, A maximum principle for nonsmooth optimal-control problems with state constraints, J. Math. Anal. Appl., 89 (1982), 212-232. doi: doi:10.1016/0022-247X(82)90099-3.

[30]

R. B. Vinter and H. Zheng, Necessary conditions for optimal control problems with state constraints, Trans. Amer. Math. Soc., 350 (1998), 1181-1204. doi: doi:10.1090/S0002-9947-98-02129-1.

[31]

J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972.

[1]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[2]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110

[3]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[4]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control and Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[5]

Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations and Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281

[6]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[7]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[8]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090

[9]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[10]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[11]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[12]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[13]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[14]

Zhen Wu, Feng Zhang. Maximum principle for discrete-time stochastic optimal control problem and stochastic game. Mathematical Control and Related Fields, 2022, 12 (2) : 475-493. doi: 10.3934/mcrf.2021031

[15]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial and Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[16]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial and Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[17]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[18]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations and Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[19]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[20]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial and Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (130)
  • HTML views (0)
  • Cited by (12)

[Back to Top]