April  2011, 29(2): 615-622. doi: 10.3934/dcds.2011.29.615

Generalized exterior sphere conditions and $\varphi$-convexity

1. 

Computer Science and Mathematics Division, Lebanese American University, Byblos Campus, P.O. Box 36, Byblos

2. 

Department of Mathematics and Statistics, Concordia University, 1400 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada

3. 

Department of Computer Science and Mathematics, Lebanese American University, Byblos Campus, P.O. Box 36, Byblos, Lebanon

Received  August 2009 Revised  March 2010 Published  October 2010

We consider sets $S\subset\R^n$ satisfying a certain exterior sphere condition, and it is shown that under wedgedness of $S$, it coincides with $\varphi$-convexity. We also offer related improvements concerning the union of uniform closed balls conjecture.
Citation: Chadi Nour, Ron J. Stern, Jean Takche. Generalized exterior sphere conditions and $\varphi$-convexity. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 615-622. doi: 10.3934/dcds.2011.29.615
References:
[1]

P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems,, ESAIM: Control Optim. Calc. Var., 12 (2006), 350. doi: doi:10.1051/cocv:2006002. Google Scholar

[2]

P. Cannarsa and C. Sinestrari, Convexity properties of the minimum time function,, Calc. Var., 3 (1995), 273. doi: doi:10.1007/BF01189393. Google Scholar

[3]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamiton-Jacobi Equations and Optimal Control,", Birkhäser, (2004). Google Scholar

[4]

A. Canino, On $p$-convex sets and geodesics,, J. Differential Equations, 75 (1988), 118. doi: doi:10.1016/0022-0396(88)90132-5. Google Scholar

[5]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Classics in Applied Mathematics, 5 (1990). Google Scholar

[6]

F. H. Clarke, Yu. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory,", Graduate Texts in Mathematics, 178 (1998). Google Scholar

[7]

F. H. Clarke and R. J. Stern, State constrained feedback stabilization,, SIAM J. Control Optim., 42 (2003), 422. doi: doi:10.1137/S036301290240453X. Google Scholar

[8]

F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property,, J. Convex Anal., 2 (1995), 117. Google Scholar

[9]

G. Colombo and A. Marigonda, Differentiability properties for a class of non-convex functions,, Calc. Var., 25 (2005), 1. doi: doi:10.1007/s00526-005-0352-7. Google Scholar

[10]

G. Colombo, A. Marigonda and P. R. Wolenski, Some new regularity properties for the minimal time function,, SIAM J. Control Optim., 44 (2006), 2285. doi: doi:10.1137/050630076. Google Scholar

[11]

H. Federer, Curvature measures,, Trans. Amer. Math. Soc., 93 (1959), 418. Google Scholar

[12]

C. Nour, R. J. Stern and J. Takche, Proximal smoothness and the exterior sphere condition,, J. Convex Anal., 16 (2009), 501. Google Scholar

[13]

C. Nour, R. J. Stern and J. Takche, The $\theta$-exterior sphere condition, $\varphi$-convexity, and local semiconcavity,, Nonlinear Anal. Theor. Meth. Appl., 73 (2010), 573. doi: doi:10.1016/j.na.2010.04.001. Google Scholar

[14]

R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis,, Trans. Amer. Math. Soc., 348 (1996), 1805. doi: doi:10.1090/S0002-9947-96-01544-9. Google Scholar

[15]

R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions,, Trans. Amer. Math. Soc., 352 (2000), 5231. doi: doi:10.1090/S0002-9947-00-02550-2. Google Scholar

[16]

R. T. Rockafellar, Clarke's tangent cones and the boundaries of closed sets in $\R^n$,, Nonlinear Anal. Theor. Meth. Appl., 3 (1979), 145. doi: doi:10.1016/0362-546X(79)90044-0. Google Scholar

[17]

R. T. Rockafellar and R. J.-B. Wets, "Variational Analysis,", Grundlehren der Mathematischen Wissenschaften, 317 (1998). Google Scholar

[18]

A. S. Shapiro, Existence and differentiability of metric projections in Hilbert spaces,, SIAM J. Optim., 4 (1994), 231. doi: doi:10.1137/0804006. Google Scholar

[19]

C. Sinestrari, Semiconcavity of the value function for exit time problems with nonsmooth target,, Commun. Pure Appl. Anal., 3 (2004), 757. doi: doi:10.3934/cpaa.2004.3.757. Google Scholar

show all references

References:
[1]

P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems,, ESAIM: Control Optim. Calc. Var., 12 (2006), 350. doi: doi:10.1051/cocv:2006002. Google Scholar

[2]

P. Cannarsa and C. Sinestrari, Convexity properties of the minimum time function,, Calc. Var., 3 (1995), 273. doi: doi:10.1007/BF01189393. Google Scholar

[3]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamiton-Jacobi Equations and Optimal Control,", Birkhäser, (2004). Google Scholar

[4]

A. Canino, On $p$-convex sets and geodesics,, J. Differential Equations, 75 (1988), 118. doi: doi:10.1016/0022-0396(88)90132-5. Google Scholar

[5]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Classics in Applied Mathematics, 5 (1990). Google Scholar

[6]

F. H. Clarke, Yu. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory,", Graduate Texts in Mathematics, 178 (1998). Google Scholar

[7]

F. H. Clarke and R. J. Stern, State constrained feedback stabilization,, SIAM J. Control Optim., 42 (2003), 422. doi: doi:10.1137/S036301290240453X. Google Scholar

[8]

F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property,, J. Convex Anal., 2 (1995), 117. Google Scholar

[9]

G. Colombo and A. Marigonda, Differentiability properties for a class of non-convex functions,, Calc. Var., 25 (2005), 1. doi: doi:10.1007/s00526-005-0352-7. Google Scholar

[10]

G. Colombo, A. Marigonda and P. R. Wolenski, Some new regularity properties for the minimal time function,, SIAM J. Control Optim., 44 (2006), 2285. doi: doi:10.1137/050630076. Google Scholar

[11]

H. Federer, Curvature measures,, Trans. Amer. Math. Soc., 93 (1959), 418. Google Scholar

[12]

C. Nour, R. J. Stern and J. Takche, Proximal smoothness and the exterior sphere condition,, J. Convex Anal., 16 (2009), 501. Google Scholar

[13]

C. Nour, R. J. Stern and J. Takche, The $\theta$-exterior sphere condition, $\varphi$-convexity, and local semiconcavity,, Nonlinear Anal. Theor. Meth. Appl., 73 (2010), 573. doi: doi:10.1016/j.na.2010.04.001. Google Scholar

[14]

R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis,, Trans. Amer. Math. Soc., 348 (1996), 1805. doi: doi:10.1090/S0002-9947-96-01544-9. Google Scholar

[15]

R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions,, Trans. Amer. Math. Soc., 352 (2000), 5231. doi: doi:10.1090/S0002-9947-00-02550-2. Google Scholar

[16]

R. T. Rockafellar, Clarke's tangent cones and the boundaries of closed sets in $\R^n$,, Nonlinear Anal. Theor. Meth. Appl., 3 (1979), 145. doi: doi:10.1016/0362-546X(79)90044-0. Google Scholar

[17]

R. T. Rockafellar and R. J.-B. Wets, "Variational Analysis,", Grundlehren der Mathematischen Wissenschaften, 317 (1998). Google Scholar

[18]

A. S. Shapiro, Existence and differentiability of metric projections in Hilbert spaces,, SIAM J. Optim., 4 (1994), 231. doi: doi:10.1137/0804006. Google Scholar

[19]

C. Sinestrari, Semiconcavity of the value function for exit time problems with nonsmooth target,, Commun. Pure Appl. Anal., 3 (2004), 757. doi: doi:10.3934/cpaa.2004.3.757. Google Scholar

[1]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[2]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[3]

Vladimir F. Demyanov, Julia A. Ryabova. Exhausters, coexhausters and converters in nonsmooth analysis. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1273-1292. doi: 10.3934/dcds.2011.31.1273

[4]

Chjan C. Lim, Da Zhu. Variational analysis of energy-enstrophy theories on the sphere. Conference Publications, 2005, 2005 (Special) : 611-620. doi: 10.3934/proc.2005.2005.611

[5]

Carlo Sinestrari. Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure & Applied Analysis, 2004, 3 (4) : 757-774. doi: 10.3934/cpaa.2004.3.757

[6]

Baojun Bian, Pengfei Guan. A structural condition for microscopic convexity principle. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 789-807. doi: 10.3934/dcds.2010.28.789

[7]

P. Cerejeiras, M. Ferreira, U. Kähler, F. Sommen. Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis. Communications on Pure & Applied Analysis, 2007, 6 (3) : 619-641. doi: 10.3934/cpaa.2007.6.619

[8]

Cédric Villani. Regularity of optimal transport and cut locus: From nonsmooth analysis to geometry to smooth analysis. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 559-571. doi: 10.3934/dcds.2011.30.559

[9]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[10]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

[11]

Xiaofei Cao, Guowei Dai. Stability analysis of a model on varying domain with the Robin boundary condition. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 935-942. doi: 10.3934/dcdss.2017048

[12]

Inbo Sim. On the existence of nodal solutions for singular one-dimensional $\varphi$-Laplacian problem with asymptotic condition. Communications on Pure & Applied Analysis, 2008, 7 (4) : 905-923. doi: 10.3934/cpaa.2008.7.905

[13]

Wei Gao, Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[14]

Jie Shen, Jian Lv, Fang-Fang Guo, Ya-Li Gao, Rui Zhao. A new proximal chebychev center cutting plane algorithm for nonsmooth optimization and its convergence. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1143-1155. doi: 10.3934/jimo.2018003

[15]

Marcio V. Ferreira, Gustavo Alberto Perla Menzala. Uniform stabilization of an electromagnetic-elasticity problem in exterior domains. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 719-746. doi: 10.3934/dcds.2007.18.719

[16]

Wei Sun. On uniform estimate of complex elliptic equations on closed Hermitian manifolds. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1553-1570. doi: 10.3934/cpaa.2017074

[17]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[18]

Hong Lu, Ji Li, Joseph Shackelford, Jeremy Vorenberg, Mingji Zhang. Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1623-1643. doi: 10.3934/dcdsb.2018064

[19]

Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609

[20]

Hideo Kubo. Global existence for exterior problems of semilinear wave equations with the null condition in $2$D. Evolution Equations & Control Theory, 2013, 2 (2) : 319-335. doi: 10.3934/eect.2013.2.319

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]