-
Previous Article
Numerical procedure for optimal control of higher index DAEs
- DCDS Home
- This Issue
-
Next Article
Generalized exterior sphere conditions and $\varphi$-convexity
$V$-Jacobian and $V$-co-Jacobian for Lipschitzian maps
1. | Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary |
2. | Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States |
References:
[1] |
N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math., 57 (1976), 147-190. |
[2] |
J. P. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Publ. Dép. Math. (Lyon), 10 (1973), 29-39, Actes du Deuxième Colloque d'Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, 29-39. |
[3] |
F. H. Clarke, On the inverse function theorem, Pacific J. Math., 64 (1976), 97-102. |
[4] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," John Wiley & Sons, Inc., New York, 1983. |
[5] |
H. Halkin, Interior mapping theorem with set-valued derivatives, J. Analyse Math., 30 (1976), 200-207.
doi: doi:10.1007/BF02786714. |
[6] |
H. Halkin, Mathematical programming without differentiability, in "Calculus of Variations and Control Theory" (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Academic Press, New York, (1976), 279-287. |
[7] |
A. D. Ioffe, Nonsmooth analysis: Differential calculus of nondifferentiable mappings, Trans. Amer. Math. Soc., 266 (1981), 1-56. |
[8] |
H. Th. Jongen and D. Pallaschke, On linearization and continuous selections of functions, Optimization, 19 (1988), 343-353.
doi: doi:10.1080/02331938808843350. |
[9] |
S. Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc., 86 (1957), 70-90. |
[10] |
D. Klatte and B. Kummer, Nonsmooth equations in optimization, in "Regularity, Calculus, Methods and Applications," Nonconvex Optimization and its Applications, vol. 60, Kluwer Academic Publishers, Dordrecht, 2002. |
[11] |
L. Kuntz and S. Scholtes, Structural analysis of nonsmooth mappings, inverse functions, and metric projections, J. Math. Anal. Appl., 188 (1994), 346-386.
doi: doi:10.1006/jmaa.1994.1431. |
[12] |
L. Kuntz and S. Scholtes, Qualitative aspects of the local approximation of a piecewise differentiable function, Nonlinear Anal., 25 (1995), 197-215.
doi: doi:10.1016/0362-546X(94)00202-S. |
[13] |
G. Lebourg, Generic differentiability of Lipschitzian functions, Trans. Amer. Math. Soc., 256 (1979), 125-144. |
[14] |
B. S. Mordukhovich, Metric approximations and necessary conditions for optimality for general classes of nonsmooth extremal problems, Dokl. Akad. Nauk SSSR, 254 (1980), 1072-1076. |
[15] |
B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl., 183 (1994), 250-288.
doi: doi:10.1006/jmaa.1994.1144. |
[16] |
B. S. Mordukhovich, Coderivatives of set-valued mappings: Calculus and applications, proceedings of the "Second World Congress of Nonlinear Analysts," Part 5 (Athens, 1996), vol. 30 (1997), 3059-3070. |
[17] |
B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, I. Basic Theory," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer-Verlag, Berlin, 2006. |
[18] |
J.-S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis of normal maps, Math. Oper. Res., 21 (1996), 401-426.
doi: doi:10.1287/moor.21.2.401. |
[19] |
Zs. Páles and V. Zeidan, Generalized Jacobian for functions with infinite dimensional range and domain, Set-Valued Anal., 15 (2007), 331-375.
doi: doi:10.1007/s11228-007-0043-y. |
[20] |
Zs. Páles and V. Zeidan, Infinite dimensional Clarke generalized Jacobian, J. Convex Anal., 14 (2007), 433-454. |
[21] |
Zs. Páles and V. Zeidan, Infinite dimensional generalized Jacobian: Properties and calculus rules, J. Math. Anal. Appl., 344 (2008), 55-75.
doi: doi:10.1016/j.jmaa.2008.02.044. |
[22] |
Zs. Páles and V. Zeidan, The core of the infinite dimensional generalized Jacobian, J. Convex Anal., 16 (2009), 321-349. |
[23] |
Zs. Páles and V. Zeidan, Co-Jacobian for Lipschitzian maps, Set-Valued and Variational Anal., 18 (2010), 57-78.
doi: doi:10.1007/s11228-009-0130-3. |
[24] |
D. Ralph and S. Scholtes, Sensitivity analysis of composite piecewise smooth equations, Math. Programming Ser. B, 76 (1997), 593-612.
doi: doi:10.1007/BF02614400. |
[25] |
D. Ralph and H. Xu, Implicit smoothing and its application to optimization with piecewise smooth equality constraints, J. Optim. Theory Appl., 124 (2005), 673-699.
doi: doi:10.1007/s10957-004-1180-1. |
[26] |
R. T. Rockafellar, A property of piecewise smooth functions, Comput. Optim. Appl., 25 (2003), 247-250, A tribute to Elijah (Lucien) Polak.
doi: doi:10.1023/A:1022921624832. |
[27] |
S. Scholtes, "Introduction to Piecewise Differentiable Equations," Habilitation thesis, University of Karlsruhe, Karlsruhe, Germany, 1994. |
[28] |
T. H. Sweetser, A minimal set-valued strong derivative for vector-valued Lipschitz functions, J. Optimization Theory Appl., 23 (1977), 549-562.
doi: doi:10.1007/BF00933296. |
[29] |
L. Thibault, Subdifferentials of compactly Lipschitzian vector-valued functions, Ann. Mat. Pura Appl. (4), 125 (1980), 157-192.
doi: doi:10.1007/BF01789411. |
[30] |
L. Thibault, On generalized differentials and subdifferentials of Lipschitz vector-valued functions, Nonlinear Anal., 6 (1982), 1037-1053.
doi: doi:10.1016/0362-546X(82)90074-8. |
[31] |
J. Warga, Derivative containers, inverse functions, and controllability, in "Calculus of Variations and Control Theory" (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975; dedicated to Laurence Chisholm Young on the occasion of his 70th birthday), Academic Press, New York, (1976), 13-45; errata, p. 46. Math. Res. Center, Univ. Wisconsin, Publ. No. 36. |
[32] |
J. Warga, Fat homeomorphisms and unbounded derivate containers, J. Math. Anal. Appl., 81 (1981), 545-560; (Errata: ibid. 82 (1982), 582-583). |
show all references
References:
[1] |
N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math., 57 (1976), 147-190. |
[2] |
J. P. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Publ. Dép. Math. (Lyon), 10 (1973), 29-39, Actes du Deuxième Colloque d'Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, 29-39. |
[3] |
F. H. Clarke, On the inverse function theorem, Pacific J. Math., 64 (1976), 97-102. |
[4] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," John Wiley & Sons, Inc., New York, 1983. |
[5] |
H. Halkin, Interior mapping theorem with set-valued derivatives, J. Analyse Math., 30 (1976), 200-207.
doi: doi:10.1007/BF02786714. |
[6] |
H. Halkin, Mathematical programming without differentiability, in "Calculus of Variations and Control Theory" (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Academic Press, New York, (1976), 279-287. |
[7] |
A. D. Ioffe, Nonsmooth analysis: Differential calculus of nondifferentiable mappings, Trans. Amer. Math. Soc., 266 (1981), 1-56. |
[8] |
H. Th. Jongen and D. Pallaschke, On linearization and continuous selections of functions, Optimization, 19 (1988), 343-353.
doi: doi:10.1080/02331938808843350. |
[9] |
S. Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc., 86 (1957), 70-90. |
[10] |
D. Klatte and B. Kummer, Nonsmooth equations in optimization, in "Regularity, Calculus, Methods and Applications," Nonconvex Optimization and its Applications, vol. 60, Kluwer Academic Publishers, Dordrecht, 2002. |
[11] |
L. Kuntz and S. Scholtes, Structural analysis of nonsmooth mappings, inverse functions, and metric projections, J. Math. Anal. Appl., 188 (1994), 346-386.
doi: doi:10.1006/jmaa.1994.1431. |
[12] |
L. Kuntz and S. Scholtes, Qualitative aspects of the local approximation of a piecewise differentiable function, Nonlinear Anal., 25 (1995), 197-215.
doi: doi:10.1016/0362-546X(94)00202-S. |
[13] |
G. Lebourg, Generic differentiability of Lipschitzian functions, Trans. Amer. Math. Soc., 256 (1979), 125-144. |
[14] |
B. S. Mordukhovich, Metric approximations and necessary conditions for optimality for general classes of nonsmooth extremal problems, Dokl. Akad. Nauk SSSR, 254 (1980), 1072-1076. |
[15] |
B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl., 183 (1994), 250-288.
doi: doi:10.1006/jmaa.1994.1144. |
[16] |
B. S. Mordukhovich, Coderivatives of set-valued mappings: Calculus and applications, proceedings of the "Second World Congress of Nonlinear Analysts," Part 5 (Athens, 1996), vol. 30 (1997), 3059-3070. |
[17] |
B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, I. Basic Theory," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer-Verlag, Berlin, 2006. |
[18] |
J.-S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis of normal maps, Math. Oper. Res., 21 (1996), 401-426.
doi: doi:10.1287/moor.21.2.401. |
[19] |
Zs. Páles and V. Zeidan, Generalized Jacobian for functions with infinite dimensional range and domain, Set-Valued Anal., 15 (2007), 331-375.
doi: doi:10.1007/s11228-007-0043-y. |
[20] |
Zs. Páles and V. Zeidan, Infinite dimensional Clarke generalized Jacobian, J. Convex Anal., 14 (2007), 433-454. |
[21] |
Zs. Páles and V. Zeidan, Infinite dimensional generalized Jacobian: Properties and calculus rules, J. Math. Anal. Appl., 344 (2008), 55-75.
doi: doi:10.1016/j.jmaa.2008.02.044. |
[22] |
Zs. Páles and V. Zeidan, The core of the infinite dimensional generalized Jacobian, J. Convex Anal., 16 (2009), 321-349. |
[23] |
Zs. Páles and V. Zeidan, Co-Jacobian for Lipschitzian maps, Set-Valued and Variational Anal., 18 (2010), 57-78.
doi: doi:10.1007/s11228-009-0130-3. |
[24] |
D. Ralph and S. Scholtes, Sensitivity analysis of composite piecewise smooth equations, Math. Programming Ser. B, 76 (1997), 593-612.
doi: doi:10.1007/BF02614400. |
[25] |
D. Ralph and H. Xu, Implicit smoothing and its application to optimization with piecewise smooth equality constraints, J. Optim. Theory Appl., 124 (2005), 673-699.
doi: doi:10.1007/s10957-004-1180-1. |
[26] |
R. T. Rockafellar, A property of piecewise smooth functions, Comput. Optim. Appl., 25 (2003), 247-250, A tribute to Elijah (Lucien) Polak.
doi: doi:10.1023/A:1022921624832. |
[27] |
S. Scholtes, "Introduction to Piecewise Differentiable Equations," Habilitation thesis, University of Karlsruhe, Karlsruhe, Germany, 1994. |
[28] |
T. H. Sweetser, A minimal set-valued strong derivative for vector-valued Lipschitz functions, J. Optimization Theory Appl., 23 (1977), 549-562.
doi: doi:10.1007/BF00933296. |
[29] |
L. Thibault, Subdifferentials of compactly Lipschitzian vector-valued functions, Ann. Mat. Pura Appl. (4), 125 (1980), 157-192.
doi: doi:10.1007/BF01789411. |
[30] |
L. Thibault, On generalized differentials and subdifferentials of Lipschitz vector-valued functions, Nonlinear Anal., 6 (1982), 1037-1053.
doi: doi:10.1016/0362-546X(82)90074-8. |
[31] |
J. Warga, Derivative containers, inverse functions, and controllability, in "Calculus of Variations and Control Theory" (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975; dedicated to Laurence Chisholm Young on the occasion of his 70th birthday), Academic Press, New York, (1976), 13-45; errata, p. 46. Math. Res. Center, Univ. Wisconsin, Publ. No. 36. |
[32] |
J. Warga, Fat homeomorphisms and unbounded derivate containers, J. Math. Anal. Appl., 81 (1981), 545-560; (Errata: ibid. 82 (1982), 582-583). |
[1] |
Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413 |
[2] |
Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675 |
[3] |
Pedro Teixeira. Dacorogna-Moser theorem on the Jacobian determinant equation with control of support. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4071-4089. doi: 10.3934/dcds.2017173 |
[4] |
Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012 |
[5] |
Bernard Dacorogna, Olivier Kneuss. Multiple Jacobian equations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1779-1787. doi: 10.3934/cpaa.2014.13.1779 |
[6] |
Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397 |
[7] |
Ronen Peretz, Nguyen Van Chau, L. Andrew Campbell, Carlos Gutierrez. Iterated images and the plane Jacobian conjecture. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 455-461. doi: 10.3934/dcds.2006.16.455 |
[8] |
Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663 |
[9] |
Kevin Kuo, Phong Luu, Duy Nguyen, Eric Perkerson, Katherine Thompson, Qing Zhang. Pairs trading: An optimal selling rule. Mathematical Control and Related Fields, 2015, 5 (3) : 489-499. doi: 10.3934/mcrf.2015.5.489 |
[10] |
Mehmet Onur Olgun, Osman Palanci, Sirma Zeynep Alparslan Gök. On the grey Baker-Thompson rule. Journal of Dynamics and Games, 2020, 7 (4) : 303-315. doi: 10.3934/jdg.2020024 |
[11] |
Piotr Jaworski, Marcin Pitera. The 20-60-20 rule. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1149-1166. doi: 10.3934/dcdsb.2016.21.1149 |
[12] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems and Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[13] |
Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046 |
[14] |
Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial and Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381 |
[15] |
Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883 |
[16] |
Hoi Tin Kong, Qing Zhang. An optimal trading rule of a mean-reverting asset. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1403-1417. doi: 10.3934/dcdsb.2010.14.1403 |
[17] |
Jingzhi Tie, Qing Zhang. Switching between a pair of stocks: An optimal trading rule. Mathematical Control and Related Fields, 2018, 8 (3&4) : 965-999. doi: 10.3934/mcrf.2018042 |
[18] |
Shiliang Weng, Xiang Zhang. Integrability of vector fields versus inverse Jacobian multipliers and normalizers. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6539-6555. doi: 10.3934/dcds.2016083 |
[19] |
Ziran Yin, Liwei Zhang. Perturbation analysis of a class of conic programming problems under Jacobian uniqueness conditions. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1387-1397. doi: 10.3934/jimo.2018100 |
[20] |
Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]