\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Subdifferentials of convex functions on time scales

Abstract Related Papers Cited by
  • The paper studies the notion of subdifferentials of functions defined on a time scale. The subdifferential of a given function $f$ is defined as the set of certain extended functions. Since the convexity of the given function guarantees its subdifferentiability, properties of convex functions on time scales are presented. We show that the convexity of a function is the necessary and sufficient condition for its subdifferentiability. The relations between the delta, nabla, diamond-$\alpha$ derivatives and subdifferentials of convex functions are given.
    Mathematics Subject Classification: Primary: 26D15, 39A13; Secondary: 52A40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3-22.

    [2]

    D. R. Anderson, Taylor polynomials for nabla dynamic equations on time scales, Panamer. Math. J., 12 (2002), 17-27.

    [3]

    J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-valued Maps and Viability Theory," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264, Springer-Verlag, Berlin, 1984.

    [4]

    B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics, in "Qualitative Theory of Differential Equations" (eds. B. Sz-Nagy and L. Hatvani), Colloq. Math. Soc. János Bolyai, 53, North Holland, Amsterdam, (1990), 37-56.

    [5]

    B. Aulbach and S. Hilger, Linear dynamic process with inhomogeneous time scale, in "Nonlinear Dynamics and Quantum Dynamical Systems" (eds. G. Leonov, V. Reitmann and W. Timmermann), Math. Res., 59, Akademie-Verlag, Berlin, (1990), 9-20.

    [6]

    N. S. Barnett, P. Cerone and S. S. Dragomir, Majorisation inequalities for Stieltjes integrals, Appl. Math. Lett., 22 (2009), 416-421.doi: doi:10.1016/j.aml.2008.06.009.

    [7]

    M. Bohner and A. Peterson, "Dynamic Equations on Time Scales. An Introduction with Applications," Birkhäuser Boston, Boston, MA, 2001.

    [8]

    M. Bohner and A. Peterson (eds.), "Advances in Dynamic Equations on Time Scales," Birkhäuser Boston, Boston, MA, 2003.

    [9]

    F. H. Clarke, "Optimization and Nonsmooth Analysis," 2nd edition, Classics in Applied Mathematics, 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.

    [10]

    C. Dinu, Convex functions on time scales, An. Univ. Craiova Ser. Mat. Inform., 35 (2008), 87-96.

    [11]

    J.-B. Hiriart-Urruty and C. Lemaréchal, "Convex Analysis and Minimization Algorithms. I. Fundamentals," Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 305, Springer-Verlag, Berlin, 1993.

    [12]

    A. B. Malinowska and D. F. M. Torres, On the diamond-alpha Riemann integral and mean value theorems on time scales, Dynam. Systems Appl., 18 (2009), 469-481.

    [13]

    A. B. Malinowska and D. F. M. Torres, Necessary and sufficient conditions for local Pareto optimality on time scales, Journal of Mathematical Sciences, 161 (2009), 803-810, arXiv:0801.2123v1.

    [14]

    D. Mozyrska and D. F. M. Torres, The natural logarithm on time scales, J. Dyn. Syst. Geom. Theor., 7 (2009), 41-48.

    [15]

    K. Murota, "Discrete Convex Analysis," SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.

    [16]

    C. Niculescu and L. E. Persson, "Convex Functions and Their Applications. A Contemporary Approach," CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006.

    [17]

    U. M. Özkan and H. Yildirim, Steffensen's integral inequality on time scales, J. Inequal. Appl., (2007), Art. ID 46524, 10 pp.

    [18]

    R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math., 17 (1966), 497-510.

    [19]

    J. W. Rogers and Q. Sheng, Notes on the diamond-$\alpha$ dynamic derivative on time scales, J. Math. Anal. Appl., 326 (2007), 228-241.doi: doi:10.1016/j.jmaa.2006.03.004.

    [20]

    Q. Sheng, M. Fadag, J. Henderson and J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl., 7 (2006), 395-413.doi: doi:10.1016/j.nonrwa.2005.03.008.

    [21]

    Q. Sheng, Hybrid approximations via second order combined dynamic derivatives on time scales, Electron. J. Qual. Theory Differ. Equ., 17 (2007), 13 pp.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(137) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return