April  2011, 29(2): 671-691. doi: 10.3934/dcds.2011.29.671

Subdifferentials of convex functions on time scales

1. 

Faculty of Computer Science, Białystok University of Technology, ul. Wiejska 45a, 15-351 Bia lystok, Poland

2. 

Faculty of Computer Science, Białystok University of Technology, ul. Wiejska 45a, 15-351 Białystok, Poland, Poland

Received  August 2009 Revised  March 2010 Published  October 2010

The paper studies the notion of subdifferentials of functions defined on a time scale. The subdifferential of a given function $f$ is defined as the set of certain extended functions. Since the convexity of the given function guarantees its subdifferentiability, properties of convex functions on time scales are presented. We show that the convexity of a function is the necessary and sufficient condition for its subdifferentiability. The relations between the delta, nabla, diamond-$\alpha$ derivatives and subdifferentials of convex functions are given.
Citation: Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671
References:
[1]

R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications,, Results Math., 35 (1999), 3.   Google Scholar

[2]

D. R. Anderson, Taylor polynomials for nabla dynamic equations on time scales,, Panamer. Math. J., 12 (2002), 17.   Google Scholar

[3]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-valued Maps and Viability Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264 (1984).   Google Scholar

[4]

B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics,, in, 53 (1990), 37.   Google Scholar

[5]

B. Aulbach and S. Hilger, Linear dynamic process with inhomogeneous time scale,, in, 59 (1990), 9.   Google Scholar

[6]

N. S. Barnett, P. Cerone and S. S. Dragomir, Majorisation inequalities for Stieltjes integrals,, Appl. Math. Lett., 22 (2009), 416.  doi: doi:10.1016/j.aml.2008.06.009.  Google Scholar

[7]

M. Bohner and A. Peterson, "Dynamic Equations on Time Scales. An Introduction with Applications,", Birkhäuser Boston, (2001).   Google Scholar

[8]

M. Bohner and A. Peterson (eds.), "Advances in Dynamic Equations on Time Scales,", Birkhäuser Boston, (2003).   Google Scholar

[9]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", 2nd edition, 5 (1990).   Google Scholar

[10]

C. Dinu, Convex functions on time scales,, An. Univ. Craiova Ser. Mat. Inform., 35 (2008), 87.   Google Scholar

[11]

J.-B. Hiriart-Urruty and C. Lemaréchal, "Convex Analysis and Minimization Algorithms. I. Fundamentals,", Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 305 (1993).   Google Scholar

[12]

A. B. Malinowska and D. F. M. Torres, On the diamond-alpha Riemann integral and mean value theorems on time scales,, Dynam. Systems Appl., 18 (2009), 469.   Google Scholar

[13]

A. B. Malinowska and D. F. M. Torres, Necessary and sufficient conditions for local Pareto optimality on time scales,, Journal of Mathematical Sciences, 161 (2009), 803.   Google Scholar

[14]

D. Mozyrska and D. F. M. Torres, The natural logarithm on time scales,, J. Dyn. Syst. Geom. Theor., 7 (2009), 41.   Google Scholar

[15]

K. Murota, "Discrete Convex Analysis,", SIAM Monographs on Discrete Mathematics and Applications, (2003).   Google Scholar

[16]

C. Niculescu and L. E. Persson, "Convex Functions and Their Applications. A Contemporary Approach,", CMS Books in Mathematics/Ouvrages de Math\'ematiques de la SMC, 23 (2006).   Google Scholar

[17]

U. M. Özkan and H. Yildirim, Steffensen's integral inequality on time scales,, J. Inequal. Appl., (2007).   Google Scholar

[18]

R. T. Rockafellar, Characterization of the subdifferentials of convex functions,, Pacific J. Math., 17 (1966), 497.   Google Scholar

[19]

J. W. Rogers and Q. Sheng, Notes on the diamond-$\alpha$ dynamic derivative on time scales,, J. Math. Anal. Appl., 326 (2007), 228.  doi: doi:10.1016/j.jmaa.2006.03.004.  Google Scholar

[20]

Q. Sheng, M. Fadag, J. Henderson and J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications,, Nonlinear Anal. Real World Appl., 7 (2006), 395.  doi: doi:10.1016/j.nonrwa.2005.03.008.  Google Scholar

[21]

Q. Sheng, Hybrid approximations via second order combined dynamic derivatives on time scales,, Electron. J. Qual. Theory Differ. Equ., 17 (2007).   Google Scholar

show all references

References:
[1]

R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications,, Results Math., 35 (1999), 3.   Google Scholar

[2]

D. R. Anderson, Taylor polynomials for nabla dynamic equations on time scales,, Panamer. Math. J., 12 (2002), 17.   Google Scholar

[3]

J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-valued Maps and Viability Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264 (1984).   Google Scholar

[4]

B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics,, in, 53 (1990), 37.   Google Scholar

[5]

B. Aulbach and S. Hilger, Linear dynamic process with inhomogeneous time scale,, in, 59 (1990), 9.   Google Scholar

[6]

N. S. Barnett, P. Cerone and S. S. Dragomir, Majorisation inequalities for Stieltjes integrals,, Appl. Math. Lett., 22 (2009), 416.  doi: doi:10.1016/j.aml.2008.06.009.  Google Scholar

[7]

M. Bohner and A. Peterson, "Dynamic Equations on Time Scales. An Introduction with Applications,", Birkhäuser Boston, (2001).   Google Scholar

[8]

M. Bohner and A. Peterson (eds.), "Advances in Dynamic Equations on Time Scales,", Birkhäuser Boston, (2003).   Google Scholar

[9]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", 2nd edition, 5 (1990).   Google Scholar

[10]

C. Dinu, Convex functions on time scales,, An. Univ. Craiova Ser. Mat. Inform., 35 (2008), 87.   Google Scholar

[11]

J.-B. Hiriart-Urruty and C. Lemaréchal, "Convex Analysis and Minimization Algorithms. I. Fundamentals,", Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 305 (1993).   Google Scholar

[12]

A. B. Malinowska and D. F. M. Torres, On the diamond-alpha Riemann integral and mean value theorems on time scales,, Dynam. Systems Appl., 18 (2009), 469.   Google Scholar

[13]

A. B. Malinowska and D. F. M. Torres, Necessary and sufficient conditions for local Pareto optimality on time scales,, Journal of Mathematical Sciences, 161 (2009), 803.   Google Scholar

[14]

D. Mozyrska and D. F. M. Torres, The natural logarithm on time scales,, J. Dyn. Syst. Geom. Theor., 7 (2009), 41.   Google Scholar

[15]

K. Murota, "Discrete Convex Analysis,", SIAM Monographs on Discrete Mathematics and Applications, (2003).   Google Scholar

[16]

C. Niculescu and L. E. Persson, "Convex Functions and Their Applications. A Contemporary Approach,", CMS Books in Mathematics/Ouvrages de Math\'ematiques de la SMC, 23 (2006).   Google Scholar

[17]

U. M. Özkan and H. Yildirim, Steffensen's integral inequality on time scales,, J. Inequal. Appl., (2007).   Google Scholar

[18]

R. T. Rockafellar, Characterization of the subdifferentials of convex functions,, Pacific J. Math., 17 (1966), 497.   Google Scholar

[19]

J. W. Rogers and Q. Sheng, Notes on the diamond-$\alpha$ dynamic derivative on time scales,, J. Math. Anal. Appl., 326 (2007), 228.  doi: doi:10.1016/j.jmaa.2006.03.004.  Google Scholar

[20]

Q. Sheng, M. Fadag, J. Henderson and J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications,, Nonlinear Anal. Real World Appl., 7 (2006), 395.  doi: doi:10.1016/j.nonrwa.2005.03.008.  Google Scholar

[21]

Q. Sheng, Hybrid approximations via second order combined dynamic derivatives on time scales,, Electron. J. Qual. Theory Differ. Equ., 17 (2007).   Google Scholar

[1]

Jan L. Cieśliński. Some implications of a new approach to exponential functions on time scales. Conference Publications, 2011, 2011 (Special) : 302-311. doi: 10.3934/proc.2011.2011.302

[2]

Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial & Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243

[3]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[4]

Christophe Cheverry, Thierry Paul. On some geometry of propagation in diffractive time scales. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 499-538. doi: 10.3934/dcds.2012.32.499

[5]

Yunfei Peng, X. Xiang, W. Wei. Backward problems of nonlinear dynamical equations on time scales. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1553-1564. doi: 10.3934/dcdss.2011.4.1553

[6]

Sung Kyu Choi, Namjip Koo. Stability of linear dynamic equations on time scales. Conference Publications, 2009, 2009 (Special) : 161-170. doi: 10.3934/proc.2009.2009.161

[7]

Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 795-811. doi: 10.3934/dcds.2002.8.795

[8]

Petr Hasil, Petr Zemánek. Critical second order operators on time scales. Conference Publications, 2011, 2011 (Special) : 653-659. doi: 10.3934/proc.2011.2011.653

[9]

B. Kaymakcalan, R. Mert, A. Zafer. Asymptotic equivalence of dynamic systems on time scales. Conference Publications, 2007, 2007 (Special) : 558-567. doi: 10.3934/proc.2007.2007.558

[10]

Akio Ito, Noriaki Yamazaki, Nobuyuki Kenmochi. Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces. Conference Publications, 1998, 1998 (Special) : 327-349. doi: 10.3934/proc.1998.1998.327

[11]

Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial & Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004

[12]

Khalida Inayat Noor, Muhammad Aslam Noor. Higher order uniformly close-to-convex functions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1277-1290. doi: 10.3934/dcdss.2015.8.1277

[13]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[14]

Zbigniew Bartosiewicz, Ülle Kotta, Maris Tőnso, Małgorzata Wyrwas. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Mathematical Control & Related Fields, 2016, 6 (2) : 217-250. doi: 10.3934/mcrf.2016002

[15]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[16]

Paul Fife, Joseph Klewicki, Tie Wei. Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 781-807. doi: 10.3934/dcds.2009.24.781

[17]

Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145

[18]

Ruichao Guo, Yong Li, Jiamin Xing, Xue Yang. Existence of periodic solutions of dynamic equations on time scales by averaging. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 959-971. doi: 10.3934/dcdss.2017050

[19]

Loïc Bourdin, Emmanuel Trélat. Optimal sampled-data control, and generalizations on time scales. Mathematical Control & Related Fields, 2016, 6 (1) : 53-94. doi: 10.3934/mcrf.2016.6.53

[20]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

[Back to Top]