July  2011, 29(3): 693-736. doi: 10.3934/dcds.2011.29.693

Simultaneous continuation of infinitely many sinks at homoclinic bifurcations

1. 

Instituto de Matemática y Estadística Prof. Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República, Uruguay

2. 

Instituto de Matemática y Estadistica Prof. Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República, Uruguay

3. 

Instituto de Matemática y Estadistica Prof. Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Received  June 2009 Revised  August 2010 Published  November 2010

We prove that the $C^3$ diffeomorphisms on surfaces, exhibiting infinitely many sinks near the generic unfolding of a quadratic homoclinic tangency of a dissipative saddle, can be perturbed along an infinite dimensional manifold of $C^3$ diffeomorphisms such that infinitely many sinks persist simultaneously. On the other hand, if they are perturbed along one-parameter families that unfold generically the quadratic tangencies, then at most a finite number of those sinks have continuation.
Citation: Eleonora Catsigeras, Marcelo Cerminara, Heber Enrich. Simultaneous continuation of infinitely many sinks at homoclinic bifurcations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 693-736. doi: 10.3934/dcds.2011.29.693
References:
[1]

E. Colli, Infinitely many coexisting strange attractors,, Annales de l'I.H.P. Analyse non-linéaire, 15 (1998), 539.   Google Scholar

[2]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[3]

W. de Melo, Structural stability of diffeomorphisms on two-manifolds,, Inventiones Math, 21 (1973), 233.  doi: 10.1007/BF01390199.  Google Scholar

[4]

A. Gorodetski and V. Kaloshin, How often surface diffeomorphisms have inifinitely sinks and hyperbolicity of periodic points near an homoclinic tangency,, Adv. Math., 208 (2007), 710.  doi: 10.1016/j.aim.2006.03.012.  Google Scholar

[5]

I. Kan, H. Koçak and J. A. Yorke, Antimonotonicity: Concurrent creation and annihilation of periodic orbits,, Ann. Math., 136 (1992), 219.  doi: 10.2307/2946605.  Google Scholar

[6]

S. Newhouse, Non density of Axiom A on $S^2$,, Proc. A.M.S. Symp. Pure Math., 14 (1970), 191.  doi: 10.1016/0040-9383(74)90034-2.  Google Scholar

[7]

S. Newhouse, Diffeomorphisms with infinitely many sinks,, Topology, 13 (1974), 9.   Google Scholar

[8]

S. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms,, Publ. IHÉS, 50 (1979), 101.   Google Scholar

[9]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors. Géométrie complexe et systèmes dynamiques (Orsay, 1995),, Astérisque, 261 (2000), 335.   Google Scholar

[10]

J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynanics of Homoclinic Bifurcations,", University Press, (1993).   Google Scholar

[11]

C. Robinson, Bifurcation to infinitely many sinks,, Comm Math Phys., 90 (1983), 433.  doi: 10.1007/BF01206892.  Google Scholar

[12]

M. Shub, "Global Stability of Dynamical Systems,", Springer Verlag, (1987), 23.   Google Scholar

[13]

S. Smale, Diffeomorphisms with many periodic points,, in, (1965), 63.   Google Scholar

[14]

L. Tedeschini-Lalli and J. A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks?,, Comm. Math. Phys., 106 (1986), 635.  doi: 10.1007/BF01463400.  Google Scholar

[15]

J. A. Yorke and K. T. Alligood, Cascades of period doubling bifurcations: A prerequisite for horseshoes,, Bull AMS, 9 (1983), 319.  doi: 10.1090/S0273-0979-1983-15191-1.  Google Scholar

show all references

References:
[1]

E. Colli, Infinitely many coexisting strange attractors,, Annales de l'I.H.P. Analyse non-linéaire, 15 (1998), 539.   Google Scholar

[2]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[3]

W. de Melo, Structural stability of diffeomorphisms on two-manifolds,, Inventiones Math, 21 (1973), 233.  doi: 10.1007/BF01390199.  Google Scholar

[4]

A. Gorodetski and V. Kaloshin, How often surface diffeomorphisms have inifinitely sinks and hyperbolicity of periodic points near an homoclinic tangency,, Adv. Math., 208 (2007), 710.  doi: 10.1016/j.aim.2006.03.012.  Google Scholar

[5]

I. Kan, H. Koçak and J. A. Yorke, Antimonotonicity: Concurrent creation and annihilation of periodic orbits,, Ann. Math., 136 (1992), 219.  doi: 10.2307/2946605.  Google Scholar

[6]

S. Newhouse, Non density of Axiom A on $S^2$,, Proc. A.M.S. Symp. Pure Math., 14 (1970), 191.  doi: 10.1016/0040-9383(74)90034-2.  Google Scholar

[7]

S. Newhouse, Diffeomorphisms with infinitely many sinks,, Topology, 13 (1974), 9.   Google Scholar

[8]

S. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms,, Publ. IHÉS, 50 (1979), 101.   Google Scholar

[9]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors. Géométrie complexe et systèmes dynamiques (Orsay, 1995),, Astérisque, 261 (2000), 335.   Google Scholar

[10]

J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynanics of Homoclinic Bifurcations,", University Press, (1993).   Google Scholar

[11]

C. Robinson, Bifurcation to infinitely many sinks,, Comm Math Phys., 90 (1983), 433.  doi: 10.1007/BF01206892.  Google Scholar

[12]

M. Shub, "Global Stability of Dynamical Systems,", Springer Verlag, (1987), 23.   Google Scholar

[13]

S. Smale, Diffeomorphisms with many periodic points,, in, (1965), 63.   Google Scholar

[14]

L. Tedeschini-Lalli and J. A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks?,, Comm. Math. Phys., 106 (1986), 635.  doi: 10.1007/BF01463400.  Google Scholar

[15]

J. A. Yorke and K. T. Alligood, Cascades of period doubling bifurcations: A prerequisite for horseshoes,, Bull AMS, 9 (1983), 319.  doi: 10.1090/S0273-0979-1983-15191-1.  Google Scholar

[1]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[2]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[3]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

[Back to Top]