July  2011, 29(3): 769-801. doi: 10.3934/dcds.2011.29.769

Solvability of the free boundary value problem of the Navier-Stokes equations

1. 

Center For Scientific Computation And Mathematical Modeling, University of Maryland, 4125 CSIC Building, Paint Branch Drive, College Park, MD 20742, United States

Received  January 2010 Revised  June 2010 Published  November 2010

In this paper, we study the incompressible Navier-Stokes equations on a moving domain in $\mathbb{R}^{3}$ of finite depth, bounded above by the free surface and bounded below by a solid flat bottom. We prove that there exists a unique, global-in-time solution to the problem provided that the initial velocity field and the initial profile of the boundary are sufficiently small in Sobolev spaces.
Citation: Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769
References:
[1]

R. Adams, "Sobolev Spaces,", Academic Press, (1975).   Google Scholar

[2]

D. Ambrose and N. Masmoudi, Well-posedness of 3D vortex sheets with surface tension,, Commun. Math. Sci, 5 (2007), 391.   Google Scholar

[3]

T. Beale, The initial value problem for the Navier-Stokes equations with a free surface,, Comm. Pure. Appl. Math, 34 (1981), 359.  doi: 10.1002/cpa.3160340305.  Google Scholar

[4]

T. Beale, Large time regularity of viscous surface waves,, Arch. Rational Mech. Anal, 84 (): 307.   Google Scholar

[5]

A. Bertozzi and A. Majda, "Vorticity and Incompressible Flow,", Cambridge University Press, (2002).   Google Scholar

[6]

D. Coutand and S. Shkoller, Unique solvability of the free boundary Navier-Stokes equations with surface tension,, preprint, ().   Google Scholar

[7]

D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension,, J. Amer. Math. Soc, 20 (2007), 829.  doi: 10.1090/S0894-0347-07-00556-5.  Google Scholar

[8]

W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 615.  doi: 10.1016/S0294-1449(97)80128-X.  Google Scholar

[9]

R. Danchin, Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients,, Rev. Mat. Iberoamericana, 21 (2005), 863.   Google Scholar

[10]

D. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed,, Comm. Part. Diff. Eq, 10 (1987), 1175.   Google Scholar

[11]

D. Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc, 18 (2005), 605.  doi: 10.1090/S0894-0347-05-00484-4.  Google Scholar

[12]

T. Lundgren and P. Koumoutsakos, On the generation of vorticity at a free surface,, J. Fluid Mech, 382 (1999), 351.  doi: 10.1017/S0022112098003978.  Google Scholar

[13]

D. Sylvester, Large time existence of small viscous surface waves without surface tension,, Comm. Partial Differential Equations, 15 (1990), 823.  doi: 10.1080/03605309908820709.  Google Scholar

[14]

J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation,, Comm. Pure Appl. Math, 61 (2008), 698.  doi: 10.1002/cpa.20213.  Google Scholar

[15]

J. Shatah and C. Zeng, Local wellposedness of interface problem,, preprint., ().   Google Scholar

[16]

V. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface,, J. Soviet Math, 40 (1988), 672.  doi: 10.1007/BF01094193.  Google Scholar

[17]

V. Solonnikov, Unsteady motion of an isolated volume of a viscous incompressible fluid,, Math. USSR-Izv, 31 (1988), 381.  doi: 10.1070/IM1988v031n02ABEH001081.  Google Scholar

[18]

A. Tani and N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension,, Arch. Rational Mech. Anal, 30 (1995), 303.  doi: 10.1007/BF00375142.  Google Scholar

[19]

R. Temam, "Navier-Stokes Equations - Theory and Numerical Analysis,", AMS, (2001).   Google Scholar

[20]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D,, Invent. Math, 130 (1997), 39.  doi: 10.1007/s002220050177.  Google Scholar

[21]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc, 12 (1999), 445.  doi: 10.1090/S0894-0347-99-00290-8.  Google Scholar

[22]

P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations,, Comm. Pure Appl. Math, 61 (2008), 877.  doi: 10.1002/cpa.20226.  Google Scholar

show all references

References:
[1]

R. Adams, "Sobolev Spaces,", Academic Press, (1975).   Google Scholar

[2]

D. Ambrose and N. Masmoudi, Well-posedness of 3D vortex sheets with surface tension,, Commun. Math. Sci, 5 (2007), 391.   Google Scholar

[3]

T. Beale, The initial value problem for the Navier-Stokes equations with a free surface,, Comm. Pure. Appl. Math, 34 (1981), 359.  doi: 10.1002/cpa.3160340305.  Google Scholar

[4]

T. Beale, Large time regularity of viscous surface waves,, Arch. Rational Mech. Anal, 84 (): 307.   Google Scholar

[5]

A. Bertozzi and A. Majda, "Vorticity and Incompressible Flow,", Cambridge University Press, (2002).   Google Scholar

[6]

D. Coutand and S. Shkoller, Unique solvability of the free boundary Navier-Stokes equations with surface tension,, preprint, ().   Google Scholar

[7]

D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension,, J. Amer. Math. Soc, 20 (2007), 829.  doi: 10.1090/S0894-0347-07-00556-5.  Google Scholar

[8]

W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 615.  doi: 10.1016/S0294-1449(97)80128-X.  Google Scholar

[9]

R. Danchin, Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients,, Rev. Mat. Iberoamericana, 21 (2005), 863.   Google Scholar

[10]

D. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed,, Comm. Part. Diff. Eq, 10 (1987), 1175.   Google Scholar

[11]

D. Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc, 18 (2005), 605.  doi: 10.1090/S0894-0347-05-00484-4.  Google Scholar

[12]

T. Lundgren and P. Koumoutsakos, On the generation of vorticity at a free surface,, J. Fluid Mech, 382 (1999), 351.  doi: 10.1017/S0022112098003978.  Google Scholar

[13]

D. Sylvester, Large time existence of small viscous surface waves without surface tension,, Comm. Partial Differential Equations, 15 (1990), 823.  doi: 10.1080/03605309908820709.  Google Scholar

[14]

J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation,, Comm. Pure Appl. Math, 61 (2008), 698.  doi: 10.1002/cpa.20213.  Google Scholar

[15]

J. Shatah and C. Zeng, Local wellposedness of interface problem,, preprint., ().   Google Scholar

[16]

V. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface,, J. Soviet Math, 40 (1988), 672.  doi: 10.1007/BF01094193.  Google Scholar

[17]

V. Solonnikov, Unsteady motion of an isolated volume of a viscous incompressible fluid,, Math. USSR-Izv, 31 (1988), 381.  doi: 10.1070/IM1988v031n02ABEH001081.  Google Scholar

[18]

A. Tani and N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension,, Arch. Rational Mech. Anal, 30 (1995), 303.  doi: 10.1007/BF00375142.  Google Scholar

[19]

R. Temam, "Navier-Stokes Equations - Theory and Numerical Analysis,", AMS, (2001).   Google Scholar

[20]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D,, Invent. Math, 130 (1997), 39.  doi: 10.1007/s002220050177.  Google Scholar

[21]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc, 12 (1999), 445.  doi: 10.1090/S0894-0347-99-00290-8.  Google Scholar

[22]

P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations,, Comm. Pure Appl. Math, 61 (2008), 877.  doi: 10.1002/cpa.20226.  Google Scholar

[1]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[2]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[3]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[4]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[5]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[6]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[7]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[8]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[9]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[10]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[11]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[12]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[13]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[14]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[15]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[16]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic & Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[17]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[18]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[19]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[20]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]