July  2011, 29(3): 845-871. doi: 10.3934/dcds.2011.29.845

An equivalent path functional formulation of branched transportation problems

1. 

Dipartimento di Matematica e Applicazioni, Università di Napoli "Federico II", Complesso di Monte S. Angelo, Via Cintia, 80126 Napoli, Italy

2. 

Laboratoire de Mathématiques d'Orsay, UMR CNRS 8628, Faculté des Sciences, Université Paris-Sud XI, 91405 Orsay Cedex, France

Received  January 2010 Revised  May 2010 Published  November 2010

We consider two models for branched transport: the one introduced in Bernot et al. (Publ Mat 49:417-451, 2005), which makes use of a functional defined on measures over the space of Lipschitz paths, and the path functional model presented in Brancolini et al. (J Eur Math Soc 8:415-434, 2006), where one minimizes some suitable action functional defined over the space of measure-valued Lipschitz curves, getting sort of a Riemannian metric on the space of probabilities, favouring atomic measures, with a cost depending on the masses of each of their atoms. We prove that modifying the latter model according to Brasco (Ann Mat Pura Appl 189:95-125, 2010), then the two models turn out to be equivalent.
Citation: Lorenzo Brasco, Filippo Santambrogio. An equivalent path functional formulation of branched transportation problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 845-871. doi: 10.3934/dcds.2011.29.845
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", 2nd edition, (2008).   Google Scholar

[2]

L. Ambrosio and P. Tilli, "Selected topics on 'Analysis in Metric Spaces',", Appunti dei corsi tenuti da docenti della Scuola, (2000).   Google Scholar

[3]

M. Bernot, V. Caselles and J.-M. Morel, Traffic plans,, Publ. Mat., 49 (2005), 417.   Google Scholar

[4]

M. Bernot, V. Caselles and J.-M. Morel, The structure of branched transportation networks,, Calc. Var. Partial Differential Equations, 2 (2008), 279.  doi: 10.1007/s00526-007-0139-0.  Google Scholar

[5]

M. Bernot, V. Caselles and J.-M. Morel, "Optimal Transportation Networks. Models and Theory,", Lecture Notes in Mathemathics, 1955 (1955).   Google Scholar

[6]

M. Bernot and A. Figalli, Synchronized traffic plans and stability of optima,, ESAIM Control Optim. Calc. Var., 14 (2008), 864.  doi: 10.1051/cocv:2008012.  Google Scholar

[7]

S. Bianchini and A. Brancolini, Estimates on path functionals over Wasserstein spaces,, SIAM J. Math. Anal., 42 (2010), 1179.  doi: 10.1137/100782693.  Google Scholar

[8]

A. Brancolini, G. Buttazzo and F. Santambrogio, Path functionals over Wasserstein spaces,, J. Eur. Math. Soc., 8 (2006), 415.  doi: 10.4171/JEMS/61.  Google Scholar

[9]

A. Brancolini and S. Solimini, On the Hölder regularity of the landscape function,, accepted on Interfaces Free Bound., ().   Google Scholar

[10]

L. Brasco, Curves of minimal action over metric spaces,, Ann. Mat. Pura Appl., 189 (2010), 95.  doi: 10.1007/s10231-009-0102-0.  Google Scholar

[11]

C. Dellacherie and P.-A. Meyer, "Probabilités et Potentiel" (French) [Probabilities and Potential],, Chapitres I à IV. Édition entièrement refondue, 1372 (1975).   Google Scholar

[12]

E. N. Gilbert and H. O. Pollak, Steiner minimal trees,, SIAM J. Appl. Math., 16 (1968), 1.  doi: 10.1137/0116001.  Google Scholar

[13]

S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces,, Calc. Var. Partial Differential Equations, 28 (2007), 85.  doi: 10.1007/s00526-006-0032-2.  Google Scholar

[14]

F. Maddalena, J.-M. Morel and S. Solimini, A variational model of irrigation patterns,, Interfaces Free Bound., 5 (2003), 391.  doi: 10.4171/IFB/85.  Google Scholar

[15]

F. Santambrogio, Optimal channel networks, landscape function and branched transport,, Interfaces Free Bound., 9 (2007), 149.   Google Scholar

[16]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, 58 (2003).   Google Scholar

[17]

Q. Xia, Optimal paths related to transport problems,, Commun. Contemp. Math., 5 (2003), 251.  doi: 10.1142/S021919970300094X.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", 2nd edition, (2008).   Google Scholar

[2]

L. Ambrosio and P. Tilli, "Selected topics on 'Analysis in Metric Spaces',", Appunti dei corsi tenuti da docenti della Scuola, (2000).   Google Scholar

[3]

M. Bernot, V. Caselles and J.-M. Morel, Traffic plans,, Publ. Mat., 49 (2005), 417.   Google Scholar

[4]

M. Bernot, V. Caselles and J.-M. Morel, The structure of branched transportation networks,, Calc. Var. Partial Differential Equations, 2 (2008), 279.  doi: 10.1007/s00526-007-0139-0.  Google Scholar

[5]

M. Bernot, V. Caselles and J.-M. Morel, "Optimal Transportation Networks. Models and Theory,", Lecture Notes in Mathemathics, 1955 (1955).   Google Scholar

[6]

M. Bernot and A. Figalli, Synchronized traffic plans and stability of optima,, ESAIM Control Optim. Calc. Var., 14 (2008), 864.  doi: 10.1051/cocv:2008012.  Google Scholar

[7]

S. Bianchini and A. Brancolini, Estimates on path functionals over Wasserstein spaces,, SIAM J. Math. Anal., 42 (2010), 1179.  doi: 10.1137/100782693.  Google Scholar

[8]

A. Brancolini, G. Buttazzo and F. Santambrogio, Path functionals over Wasserstein spaces,, J. Eur. Math. Soc., 8 (2006), 415.  doi: 10.4171/JEMS/61.  Google Scholar

[9]

A. Brancolini and S. Solimini, On the Hölder regularity of the landscape function,, accepted on Interfaces Free Bound., ().   Google Scholar

[10]

L. Brasco, Curves of minimal action over metric spaces,, Ann. Mat. Pura Appl., 189 (2010), 95.  doi: 10.1007/s10231-009-0102-0.  Google Scholar

[11]

C. Dellacherie and P.-A. Meyer, "Probabilités et Potentiel" (French) [Probabilities and Potential],, Chapitres I à IV. Édition entièrement refondue, 1372 (1975).   Google Scholar

[12]

E. N. Gilbert and H. O. Pollak, Steiner minimal trees,, SIAM J. Appl. Math., 16 (1968), 1.  doi: 10.1137/0116001.  Google Scholar

[13]

S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces,, Calc. Var. Partial Differential Equations, 28 (2007), 85.  doi: 10.1007/s00526-006-0032-2.  Google Scholar

[14]

F. Maddalena, J.-M. Morel and S. Solimini, A variational model of irrigation patterns,, Interfaces Free Bound., 5 (2003), 391.  doi: 10.4171/IFB/85.  Google Scholar

[15]

F. Santambrogio, Optimal channel networks, landscape function and branched transport,, Interfaces Free Bound., 9 (2007), 149.   Google Scholar

[16]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, 58 (2003).   Google Scholar

[17]

Q. Xia, Optimal paths related to transport problems,, Commun. Contemp. Math., 5 (2003), 251.  doi: 10.1142/S021919970300094X.  Google Scholar

[1]

Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks & Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359

[2]

João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks & Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303

[3]

Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe. The coolest path problem. Networks & Heterogeneous Media, 2010, 5 (1) : 143-162. doi: 10.3934/nhm.2010.5.143

[4]

Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems & Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013

[5]

P. Di Gironimo, L. D’Onofrio. On the regularity of minimizers to degenerate functionals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1311-1318. doi: 10.3934/cpaa.2010.9.1311

[6]

Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503

[7]

Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks & Heterogeneous Media, 2006, 1 (1) : 219-239. doi: 10.3934/nhm.2006.1.219

[8]

Juan Su, Bing Xu, Lan Zou. Bifurcation analysis of an enzyme-catalyzed reaction system with branched sink. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6783-6815. doi: 10.3934/dcdsb.2019167

[9]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[10]

Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437

[11]

Victor Berdichevsky. Distribution of minimum values of stochastic functionals. Networks & Heterogeneous Media, 2008, 3 (3) : 437-460. doi: 10.3934/nhm.2008.3.437

[12]

Guillaume Bal, Chenxi Guo, Francçois Monard. Linearized internal functionals for anisotropic conductivities. Inverse Problems & Imaging, 2014, 8 (1) : 1-22. doi: 10.3934/ipi.2014.8.1

[13]

Menita Carozza, Gioconda Moscariello, Antonia Passarelli. Higher integrability for minimizers of anisotropic functionals. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 43-55. doi: 10.3934/dcdsb.2009.11.43

[14]

Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054

[15]

Yuri B. Gaididei, Carlos Gorria, Rainer Berkemer, Peter L. Christiansen, Atsushi Kawamoto, Mads P. Sørensen, Jens Starke. Stochastic control of traffic patterns. Networks & Heterogeneous Media, 2013, 8 (1) : 261-273. doi: 10.3934/nhm.2013.8.261

[16]

Jonathan P. Desi, Evelyn Sander, Thomas Wanner. Complex transient patterns on the disk. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1049-1078. doi: 10.3934/dcds.2006.15.1049

[17]

Mark A. Peletier, Marco Veneroni. Stripe patterns and the Eikonal equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 183-189. doi: 10.3934/dcdss.2012.5.183

[18]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Morphogenesis of the tumor patterns. Mathematical Biosciences & Engineering, 2008, 5 (2) : 299-313. doi: 10.3934/mbe.2008.5.299

[19]

Louis Caccetta, Ian Loosen, Volker Rehbock. Computational aspects of the optimal transit path problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 95-105. doi: 10.3934/jimo.2008.4.95

[20]

Xing Huang, Chang Liu, Feng-Yu Wang. Order preservation for path-distribution dependent SDEs. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2125-2133. doi: 10.3934/cpaa.2018100

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]