July  2011, 29(3): 909-928. doi: 10.3934/dcds.2011.29.909

Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders

1. 

Department of Applied Mathematics, Hankyong National University, Ansong 456-749, South Korea

2. 

Department of Mathematics, Chosun University, Gwangju 501-759, South Korea

3. 

School of Mathematical Sciences, Seoul National University, Seoul 151-742, South Korea

Received  August 2009 Revised  September 2010 Published  November 2010

We consider the mass concentration phenomenon for the $L^2$-critical nonlinear Schrödinger equations of higher orders. We show that any solution $u$ to $iu_{t} + (-\Delta)^{\frac\alpha 2} u =\pm |u|^\frac{2\alpha}{d}u$, $u(0,\cdot)\in L^2$ for $\alpha >2$, which blows up in a finite time, satisfies a mass concentration phenomenon near the blow-up time. We verify that as $\alpha$ increases, the size of region capturing a mass concentration gets wider due to the stronger dispersive effect.
Citation: Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909
References:
[1]

P. Bégout and A. Vargas, Mass concentration Phenomena for the $L^2$-critical for the nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 5257.  doi: 10.1090/S0002-9947-07-04250-X.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces,", Springer, (1976).   Google Scholar

[3]

J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity,, Int. Math. Res. Not., 5 (1998), 253.  doi: 10.1155/S1073792898000191.  Google Scholar

[4]

M. Chae, S. Hong, J. Kim, S. Lee and C. W. Yang, On mass concentration for the $L^2$-critical nonlinear Schrödinger equations,, Comm. Partial Differential Equations, 34 (2009), 486.  doi: 10.1080/03605300902812426.  Google Scholar

[5]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[6]

G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth order dispersion,, SIAM J. Appl. Math., 62 (2002), 1437.  doi: 10.1137/S0036139901387241.  Google Scholar

[7]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations,, Phys. Rev. E, 53 (1996), 1336.  doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[8]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion,, Phys. D., 144 (2000), 194.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[10]

S. Lee and A. Vargas, Sharp null form estimates for the wave equation,, Amer. J. Math., 130 (2008), 1279.  doi: 10.1353/ajm.0.0024.  Google Scholar

[11]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Diff. Eq., 84 (1990), 205.   Google Scholar

[12]

A. Moyua, A. Vargas and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform,, Int. Math. Res. Not., 16 (1996), 793.  doi: 10.1155/S1073792896000499.  Google Scholar

[13]

H. Nawa, Mass concentration phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity,, Funkcial. Ekvac., 35 (1992), 1.   Google Scholar

[14]

B. Pausader, "Problèmes Bien Posés et Diffusion pour Des équations Non Linéaires Dispersives D'ordre Quatre,", Ph.d dissertation, (2008).   Google Scholar

[15]

K. Rogers and A. Vargas, A refinement of the Strichartz inequality on the saddle and applications,, J. Funct. Anal., 241 (2006), 212.  doi: 10.1016/j.jfa.2006.04.026.  Google Scholar

[16]

E. M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,", Princeton Univ. Press, (1993).   Google Scholar

[17]

T. Tao, A sharp bilinear restrictions estimate for paraboloids,, Geom. Funct. Anal., 13 (2003), 1359.  doi: 10.1007/s00039-003-0449-0.  Google Scholar

[18]

T. Tao, "Nonlinear Dispersive Equations,", CBMS Regional Conf. Ser. in Math. Amer. Math. Soc., 106 (2006).   Google Scholar

[19]

T. Tao, A. Vargas and L. Vega, A bilinear approach to the restriction and Kakeya conjectures,, J. Amer. Math. Soc., 11 (1998), 967.  doi: 10.1090/S0894-0347-98-00278-1.  Google Scholar

show all references

References:
[1]

P. Bégout and A. Vargas, Mass concentration Phenomena for the $L^2$-critical for the nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 5257.  doi: 10.1090/S0002-9947-07-04250-X.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces,", Springer, (1976).   Google Scholar

[3]

J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity,, Int. Math. Res. Not., 5 (1998), 253.  doi: 10.1155/S1073792898000191.  Google Scholar

[4]

M. Chae, S. Hong, J. Kim, S. Lee and C. W. Yang, On mass concentration for the $L^2$-critical nonlinear Schrödinger equations,, Comm. Partial Differential Equations, 34 (2009), 486.  doi: 10.1080/03605300902812426.  Google Scholar

[5]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[6]

G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth order dispersion,, SIAM J. Appl. Math., 62 (2002), 1437.  doi: 10.1137/S0036139901387241.  Google Scholar

[7]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations,, Phys. Rev. E, 53 (1996), 1336.  doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[8]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion,, Phys. D., 144 (2000), 194.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[10]

S. Lee and A. Vargas, Sharp null form estimates for the wave equation,, Amer. J. Math., 130 (2008), 1279.  doi: 10.1353/ajm.0.0024.  Google Scholar

[11]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Diff. Eq., 84 (1990), 205.   Google Scholar

[12]

A. Moyua, A. Vargas and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform,, Int. Math. Res. Not., 16 (1996), 793.  doi: 10.1155/S1073792896000499.  Google Scholar

[13]

H. Nawa, Mass concentration phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity,, Funkcial. Ekvac., 35 (1992), 1.   Google Scholar

[14]

B. Pausader, "Problèmes Bien Posés et Diffusion pour Des équations Non Linéaires Dispersives D'ordre Quatre,", Ph.d dissertation, (2008).   Google Scholar

[15]

K. Rogers and A. Vargas, A refinement of the Strichartz inequality on the saddle and applications,, J. Funct. Anal., 241 (2006), 212.  doi: 10.1016/j.jfa.2006.04.026.  Google Scholar

[16]

E. M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,", Princeton Univ. Press, (1993).   Google Scholar

[17]

T. Tao, A sharp bilinear restrictions estimate for paraboloids,, Geom. Funct. Anal., 13 (2003), 1359.  doi: 10.1007/s00039-003-0449-0.  Google Scholar

[18]

T. Tao, "Nonlinear Dispersive Equations,", CBMS Regional Conf. Ser. in Math. Amer. Math. Soc., 106 (2006).   Google Scholar

[19]

T. Tao, A. Vargas and L. Vega, A bilinear approach to the restriction and Kakeya conjectures,, J. Amer. Math. Soc., 11 (1998), 967.  doi: 10.1090/S0894-0347-98-00278-1.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[2]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[5]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[6]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[7]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[11]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[12]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[15]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[16]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[17]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[18]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[19]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[20]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]