Advanced Search
Article Contents
Article Contents

Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders

Abstract Related Papers Cited by
  • We consider the mass concentration phenomenon for the $L^2$-critical nonlinear Schrödinger equations of higher orders. We show that any solution $u$ to $iu_{t} + (-\Delta)^{\frac\alpha 2} u =\pm |u|^\frac{2\alpha}{d}u$, $u(0,\cdot)\in L^2$ for $\alpha >2$, which blows up in a finite time, satisfies a mass concentration phenomenon near the blow-up time. We verify that as $\alpha$ increases, the size of region capturing a mass concentration gets wider due to the stronger dispersive effect.
    Mathematics Subject Classification: Primary: 35B05, 35B30, 35B33; Secondary: 35Q55, 42B10.


    \begin{equation} \\ \end{equation}
  • [1]

    P. Bégout and A. Vargas, Mass concentration Phenomena for the $L^2$-critical for the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282.doi: 10.1090/S0002-9947-07-04250-X.


    J. Bergh and J. Löfström, "Interpolation Spaces," Springer, New York, 1976.


    J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity, Int. Math. Res. Not., 5 (1998), 253-283.doi: 10.1155/S1073792898000191.


    M. Chae, S. Hong, J. Kim, S. Lee and C. W. Yang, On mass concentration for the $L^2$-critical nonlinear Schrödinger equations, Comm. Partial Differential Equations, 34 (2009), 486-505.doi: 10.1080/03605300902812426.


    M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425.doi: 10.1006/jfan.2000.3687.


    G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.doi: 10.1137/S0036139901387241.


    V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.doi: 10.1103/PhysRevE.53.R1336.


    V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Phys. D., 144 (2000), 194-210.doi: 10.1016/S0167-2789(00)00078-6.


    M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.doi: 10.1353/ajm.1998.0039.


    S. Lee and A. Vargas, Sharp null form estimates for the wave equation, Amer. J. Math., 130 (2008), 1279-1326.doi: 10.1353/ajm.0.0024.


    F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Diff. Eq., 84 (1990), 205-214.


    A. Moyua, A. Vargas and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not., 16 (1996), 793-815.doi: 10.1155/S1073792896000499.


    H. Nawa, Mass concentration phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity, Funkcial. Ekvac., 35 (1992), 1-18.


    B. Pausader, "Problèmes Bien Posés et Diffusion pour Des équations Non Linéaires Dispersives D'ordre Quatre," Ph.d dissertation, Université de Cergy Pontoise, 2008.


    K. Rogers and A. Vargas, A refinement of the Strichartz inequality on the saddle and applications, J. Funct. Anal., 241 (2006), 212-231.doi: 10.1016/j.jfa.2006.04.026.


    E. M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals," Princeton Univ. Press, 1993.


    T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal., 13 (2003), 1359-1384.doi: 10.1007/s00039-003-0449-0.


    T. Tao, "Nonlinear Dispersive Equations," CBMS Regional Conf. Ser. in Math. Amer. Math. Soc., 106, 2006.


    T. Tao, A. Vargas and L. Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc., 11 (1998), 967-1000.doi: 10.1090/S0894-0347-98-00278-1.

  • 加载中

Article Metrics

HTML views() PDF downloads(123) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint