July  2011, 29(3): 909-928. doi: 10.3934/dcds.2011.29.909

Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders

1. 

Department of Applied Mathematics, Hankyong National University, Ansong 456-749, South Korea

2. 

Department of Mathematics, Chosun University, Gwangju 501-759, South Korea

3. 

School of Mathematical Sciences, Seoul National University, Seoul 151-742, South Korea

Received  August 2009 Revised  September 2010 Published  November 2010

We consider the mass concentration phenomenon for the $L^2$-critical nonlinear Schrödinger equations of higher orders. We show that any solution $u$ to $iu_{t} + (-\Delta)^{\frac\alpha 2} u =\pm |u|^\frac{2\alpha}{d}u$, $u(0,\cdot)\in L^2$ for $\alpha >2$, which blows up in a finite time, satisfies a mass concentration phenomenon near the blow-up time. We verify that as $\alpha$ increases, the size of region capturing a mass concentration gets wider due to the stronger dispersive effect.
Citation: Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909
References:
[1]

P. Bégout and A. Vargas, Mass concentration Phenomena for the $L^2$-critical for the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282. doi: 10.1090/S0002-9947-07-04250-X.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces," Springer, New York, 1976. Google Scholar

[3]

J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity, Int. Math. Res. Not., 5 (1998), 253-283. doi: 10.1155/S1073792898000191.  Google Scholar

[4]

M. Chae, S. Hong, J. Kim, S. Lee and C. W. Yang, On mass concentration for the $L^2$-critical nonlinear Schrödinger equations, Comm. Partial Differential Equations, 34 (2009), 486-505. doi: 10.1080/03605300902812426.  Google Scholar

[5]

M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425. doi: 10.1006/jfan.2000.3687.  Google Scholar

[6]

G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462. doi: 10.1137/S0036139901387241.  Google Scholar

[7]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339. doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[8]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Phys. D., 144 (2000), 194-210. doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039.  Google Scholar

[10]

S. Lee and A. Vargas, Sharp null form estimates for the wave equation, Amer. J. Math., 130 (2008), 1279-1326. doi: 10.1353/ajm.0.0024.  Google Scholar

[11]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Diff. Eq., 84 (1990), 205-214.  Google Scholar

[12]

A. Moyua, A. Vargas and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not., 16 (1996), 793-815. doi: 10.1155/S1073792896000499.  Google Scholar

[13]

H. Nawa, Mass concentration phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity, Funkcial. Ekvac., 35 (1992), 1-18.  Google Scholar

[14]

B. Pausader, "Problèmes Bien Posés et Diffusion pour Des équations Non Linéaires Dispersives D'ordre Quatre," Ph.d dissertation, Université de Cergy Pontoise, 2008. Google Scholar

[15]

K. Rogers and A. Vargas, A refinement of the Strichartz inequality on the saddle and applications, J. Funct. Anal., 241 (2006), 212-231. doi: 10.1016/j.jfa.2006.04.026.  Google Scholar

[16]

E. M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals," Princeton Univ. Press, 1993. Google Scholar

[17]

T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal., 13 (2003), 1359-1384. doi: 10.1007/s00039-003-0449-0.  Google Scholar

[18]

T. Tao, "Nonlinear Dispersive Equations," CBMS Regional Conf. Ser. in Math. Amer. Math. Soc., 106, 2006. Google Scholar

[19]

T. Tao, A. Vargas and L. Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc., 11 (1998), 967-1000. doi: 10.1090/S0894-0347-98-00278-1.  Google Scholar

show all references

References:
[1]

P. Bégout and A. Vargas, Mass concentration Phenomena for the $L^2$-critical for the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282. doi: 10.1090/S0002-9947-07-04250-X.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces," Springer, New York, 1976. Google Scholar

[3]

J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity, Int. Math. Res. Not., 5 (1998), 253-283. doi: 10.1155/S1073792898000191.  Google Scholar

[4]

M. Chae, S. Hong, J. Kim, S. Lee and C. W. Yang, On mass concentration for the $L^2$-critical nonlinear Schrödinger equations, Comm. Partial Differential Equations, 34 (2009), 486-505. doi: 10.1080/03605300902812426.  Google Scholar

[5]

M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425. doi: 10.1006/jfan.2000.3687.  Google Scholar

[6]

G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462. doi: 10.1137/S0036139901387241.  Google Scholar

[7]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339. doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[8]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Phys. D., 144 (2000), 194-210. doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039.  Google Scholar

[10]

S. Lee and A. Vargas, Sharp null form estimates for the wave equation, Amer. J. Math., 130 (2008), 1279-1326. doi: 10.1353/ajm.0.0024.  Google Scholar

[11]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Diff. Eq., 84 (1990), 205-214.  Google Scholar

[12]

A. Moyua, A. Vargas and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not., 16 (1996), 793-815. doi: 10.1155/S1073792896000499.  Google Scholar

[13]

H. Nawa, Mass concentration phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity, Funkcial. Ekvac., 35 (1992), 1-18.  Google Scholar

[14]

B. Pausader, "Problèmes Bien Posés et Diffusion pour Des équations Non Linéaires Dispersives D'ordre Quatre," Ph.d dissertation, Université de Cergy Pontoise, 2008. Google Scholar

[15]

K. Rogers and A. Vargas, A refinement of the Strichartz inequality on the saddle and applications, J. Funct. Anal., 241 (2006), 212-231. doi: 10.1016/j.jfa.2006.04.026.  Google Scholar

[16]

E. M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals," Princeton Univ. Press, 1993. Google Scholar

[17]

T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal., 13 (2003), 1359-1384. doi: 10.1007/s00039-003-0449-0.  Google Scholar

[18]

T. Tao, "Nonlinear Dispersive Equations," CBMS Regional Conf. Ser. in Math. Amer. Math. Soc., 106, 2006. Google Scholar

[19]

T. Tao, A. Vargas and L. Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc., 11 (1998), 967-1000. doi: 10.1090/S0894-0347-98-00278-1.  Google Scholar

[1]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[2]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[3]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082

[4]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[5]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[6]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[7]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051

[10]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[11]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[12]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[13]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[14]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[15]

Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020

[16]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[17]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

[18]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[19]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]