July  2011, 29(3): 909-928. doi: 10.3934/dcds.2011.29.909

Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders

1. 

Department of Applied Mathematics, Hankyong National University, Ansong 456-749, South Korea

2. 

Department of Mathematics, Chosun University, Gwangju 501-759, South Korea

3. 

School of Mathematical Sciences, Seoul National University, Seoul 151-742, South Korea

Received  August 2009 Revised  September 2010 Published  November 2010

We consider the mass concentration phenomenon for the $L^2$-critical nonlinear Schrödinger equations of higher orders. We show that any solution $u$ to $iu_{t} + (-\Delta)^{\frac\alpha 2} u =\pm |u|^\frac{2\alpha}{d}u$, $u(0,\cdot)\in L^2$ for $\alpha >2$, which blows up in a finite time, satisfies a mass concentration phenomenon near the blow-up time. We verify that as $\alpha$ increases, the size of region capturing a mass concentration gets wider due to the stronger dispersive effect.
Citation: Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909
References:
[1]

P. Bégout and A. Vargas, Mass concentration Phenomena for the $L^2$-critical for the nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 5257.  doi: 10.1090/S0002-9947-07-04250-X.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces,", Springer, (1976).   Google Scholar

[3]

J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity,, Int. Math. Res. Not., 5 (1998), 253.  doi: 10.1155/S1073792898000191.  Google Scholar

[4]

M. Chae, S. Hong, J. Kim, S. Lee and C. W. Yang, On mass concentration for the $L^2$-critical nonlinear Schrödinger equations,, Comm. Partial Differential Equations, 34 (2009), 486.  doi: 10.1080/03605300902812426.  Google Scholar

[5]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[6]

G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth order dispersion,, SIAM J. Appl. Math., 62 (2002), 1437.  doi: 10.1137/S0036139901387241.  Google Scholar

[7]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations,, Phys. Rev. E, 53 (1996), 1336.  doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[8]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion,, Phys. D., 144 (2000), 194.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[10]

S. Lee and A. Vargas, Sharp null form estimates for the wave equation,, Amer. J. Math., 130 (2008), 1279.  doi: 10.1353/ajm.0.0024.  Google Scholar

[11]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Diff. Eq., 84 (1990), 205.   Google Scholar

[12]

A. Moyua, A. Vargas and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform,, Int. Math. Res. Not., 16 (1996), 793.  doi: 10.1155/S1073792896000499.  Google Scholar

[13]

H. Nawa, Mass concentration phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity,, Funkcial. Ekvac., 35 (1992), 1.   Google Scholar

[14]

B. Pausader, "Problèmes Bien Posés et Diffusion pour Des équations Non Linéaires Dispersives D'ordre Quatre,", Ph.d dissertation, (2008).   Google Scholar

[15]

K. Rogers and A. Vargas, A refinement of the Strichartz inequality on the saddle and applications,, J. Funct. Anal., 241 (2006), 212.  doi: 10.1016/j.jfa.2006.04.026.  Google Scholar

[16]

E. M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,", Princeton Univ. Press, (1993).   Google Scholar

[17]

T. Tao, A sharp bilinear restrictions estimate for paraboloids,, Geom. Funct. Anal., 13 (2003), 1359.  doi: 10.1007/s00039-003-0449-0.  Google Scholar

[18]

T. Tao, "Nonlinear Dispersive Equations,", CBMS Regional Conf. Ser. in Math. Amer. Math. Soc., 106 (2006).   Google Scholar

[19]

T. Tao, A. Vargas and L. Vega, A bilinear approach to the restriction and Kakeya conjectures,, J. Amer. Math. Soc., 11 (1998), 967.  doi: 10.1090/S0894-0347-98-00278-1.  Google Scholar

show all references

References:
[1]

P. Bégout and A. Vargas, Mass concentration Phenomena for the $L^2$-critical for the nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 5257.  doi: 10.1090/S0002-9947-07-04250-X.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces,", Springer, (1976).   Google Scholar

[3]

J. Bourgain, Refinements of Strichartz' inequality and applications to $2$D-NLS with critical nonlinearity,, Int. Math. Res. Not., 5 (1998), 253.  doi: 10.1155/S1073792898000191.  Google Scholar

[4]

M. Chae, S. Hong, J. Kim, S. Lee and C. W. Yang, On mass concentration for the $L^2$-critical nonlinear Schrödinger equations,, Comm. Partial Differential Equations, 34 (2009), 486.  doi: 10.1080/03605300902812426.  Google Scholar

[5]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[6]

G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth order dispersion,, SIAM J. Appl. Math., 62 (2002), 1437.  doi: 10.1137/S0036139901387241.  Google Scholar

[7]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations,, Phys. Rev. E, 53 (1996), 1336.  doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[8]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion,, Phys. D., 144 (2000), 194.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[10]

S. Lee and A. Vargas, Sharp null form estimates for the wave equation,, Amer. J. Math., 130 (2008), 1279.  doi: 10.1353/ajm.0.0024.  Google Scholar

[11]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Diff. Eq., 84 (1990), 205.   Google Scholar

[12]

A. Moyua, A. Vargas and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform,, Int. Math. Res. Not., 16 (1996), 793.  doi: 10.1155/S1073792896000499.  Google Scholar

[13]

H. Nawa, Mass concentration phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity,, Funkcial. Ekvac., 35 (1992), 1.   Google Scholar

[14]

B. Pausader, "Problèmes Bien Posés et Diffusion pour Des équations Non Linéaires Dispersives D'ordre Quatre,", Ph.d dissertation, (2008).   Google Scholar

[15]

K. Rogers and A. Vargas, A refinement of the Strichartz inequality on the saddle and applications,, J. Funct. Anal., 241 (2006), 212.  doi: 10.1016/j.jfa.2006.04.026.  Google Scholar

[16]

E. M. Stein, "Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,", Princeton Univ. Press, (1993).   Google Scholar

[17]

T. Tao, A sharp bilinear restrictions estimate for paraboloids,, Geom. Funct. Anal., 13 (2003), 1359.  doi: 10.1007/s00039-003-0449-0.  Google Scholar

[18]

T. Tao, "Nonlinear Dispersive Equations,", CBMS Regional Conf. Ser. in Math. Amer. Math. Soc., 106 (2006).   Google Scholar

[19]

T. Tao, A. Vargas and L. Vega, A bilinear approach to the restriction and Kakeya conjectures,, J. Amer. Math. Soc., 11 (1998), 967.  doi: 10.1090/S0894-0347-98-00278-1.  Google Scholar

[1]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[2]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[3]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[4]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[5]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[6]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[7]

Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051

[8]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[9]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[10]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[11]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[12]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[13]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

[14]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[15]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[16]

Teresa D'Aprile. Some existence and concentration results for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2002, 1 (4) : 457-474. doi: 10.3934/cpaa.2002.1.457

[17]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[18]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[19]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[20]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]