\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a generalized Poincaré-Hopf formula in infinite dimensions

Abstract Related Papers Cited by
  • We prove a formula relating the fixed point index of rest points of a completely continuous semiflow defined on a (not necessarily locally compact) metric space in the interior of an isolating block $B$ to the Euler characteristic of the pair $(B,B^-)$, where $B^-$ is the exit set. The proof relies on a general concept of an approximate neighborhood extension space and a full fixed point index theory for self-maps of such spaces. As a consequence, a generalized Poincaré-Hopf type formula for the differential equation determined by a perturbation of the generator of a compact $C_0$ semigroup is obtained.
    Mathematics Subject Classification: Primary: 37C25, 37B30, 55M15, 55M20; Secondary: 47D03, 47H11.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Agarwal and D. O'Regan, A note on the Lefschetz fixed point theorem for admissible spaces, Bull. Korean Math. Soc., 42 (2005), 307-313.doi: 10.4134/BKMS.2005.42.2.307.

    [2]

    T. Bartsch and N. Dancer, Poincaré-Hopf formulas on convex sets of Banach spaces, Topol. Math. Nonl. Anal., 34 (2009), 213-230.

    [3]

    H. Ben-El-Mechaiekh, The coincidence problem for compositions of set-valued maps, Bull. Austral. Math. Soc., 41 (1990), 421-434.doi: 10.1017/S000497270001830X.

    [4]

    M. Clapp, On a generalization of absolute neighborhood retracts, Fund. Math., 70 (1971), 117-130.

    [5]

    B. Cornet, Euler characteristic and fixed-point theorems, Positivity, 6 (2002), 243-260.doi: 10.1023/A:1020242731195.

    [6]

    B. Cornet and M.-O. Czarnecki, Existence of (generalized) equilibria: Necessary and sufficient conditions, Communications on Applied Nonlinear Analysis, 7 (2000), 21-53.

    [7]

    A. Ćwiszewski, Topological degree methods for perturbations of operators generating compact $C_0$ semigroups, J. Diff. Eq., 220 (2006), 434-477.

    [8]

    A. Ćwiszewski and W. Kryszewski, Homotopy invariants for tangent vector fields on closed sets, Nonlinear Anal., 65 (2006), 175-209.doi: 10.1016/j.na.2005.09.010.

    [9]

    E. N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Angew. Math., 350 (1984), 1-22.doi: 10.1515/crll.1984.350.1.

    [10]

    S. Eilenberg and N. Steenrod, "Foundations of Alegebraic Topology," Princeton Univ. Press, Princeton, 1952.

    [11]

    R. Engelking, "General Topology," Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1989.

    [12]

    J. Girolo, Approximating compact sets in normed linear spaces, Pacific J. Math., 98 (1982), 81-89.

    [13]

    A. Granas and J. Dugundji, "Fixed Point Theory," Springer-Verlag, New York, Berlin, 2003.

    [14]

    M. W. Hirsch, "Differential Topology," Graduate Texts in Mathematics, 33, Springer-Verlag, New York-Heidelberg, 1976.

    [15]

    S. T. Hu, "Theory of Retracts," Wayne State Univ. Press, Detroit, 1965.

    [16]

    M. Kamenskii and M. Quincampoix, Existence of fixed points on compact epilipschitz sets without invariance conditions, Fixed Point Theory and Appl., 3 (2005), 267-279.doi: 10.1155/FPTA.2005.267.

    [17]

    A. G. Kartsatos, Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces, in "Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, 1992," Walter de Gruyter, New York, 1996.

    [18]

    R. Knill, A general setting for local fixed point theory, J. Math. Pures et Appl., 54 (1975), 389-428.

    [19]

    Ch. K. McCord, On the Hopf index and the Conley index, Trans. Amer. Math. Soc., 313 (1989), 853-860.doi: 10.1090/S0002-9947-1989-0961594-0.

    [20]

    J. W. Milnor, "Topology from the Differentiable Viewpoint," Princeton University Press, Princeton, NJ, 1997.

    [21]

    M. Mrozek, The fixed point index of a translation operator of a semiflow, Univ. Iagel. Acta Math., 27 (1988), 13-22.

    [22]

    H. Noguchi, A generalization of absolute neighborhood retracts, Ködai Math. Sem. Rep., 1 (1953), 20-22.doi: 10.2996/kmj/1138843296.

    [23]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

    [24]

    K. P. Rybakowski, On a relation between the Brouwer degree and the Conley index for gradient flows, Bull. Soc. Math. Belg. Ser. B, 37 (1985), 87-96.

    [25]

    K. P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc., 269 (1982), 351-382.doi: 10.1090/S0002-9947-1982-0637695-7.

    [26]

    K. P. Rybakowski, "Homotopy Index and Partial Differential Equations," Springer-Verlag, Berlin, 1987.

    [27]

    R. Srzedncki, On rest points of dynamical systems, Fund. Math., 126 (1985), 69-81.

    [28]

    R. Srzednicki, K. Wójcik and P. Zgliczyński, Fixed point results based on the Ważewski method, in "Handbook of Topological Fixed Point Theory," Springer, Dordrecht, (2005), 905-943.doi: 10.1007/1-4020-3222-6_23.

    [29]

    M. Styborski, Conley index in Hilbert spaces and the Leray-Schauder degree, Topol. Meth. Nonl. Anal., 33 (2009), 131-148.

    [30]

    J. H. C. Whitehead, Note on a theorem due to Borsuk, Bull. Amer. Math. Soc., 54 (1948), 1125-1132.doi: 10.1090/S0002-9904-1948-09138-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(66) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return