July  2011, 29(3): 979-999. doi: 10.3934/dcds.2011.29.979

Renormalization and $\alpha$-limit set for expanding Lorenz maps

1. 

Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China

Received  November 2009 Revised  September 2010 Published  November 2010

We show that there is a bijection between the renormalizations and proper completely invariant closed sets of expanding Lorenz map, which enables us to distinguish periodic and non-periodic renormalizations. Based on the properties of the periodic orbit with minimal period, the minimal completely invariant closed set is constructed. Topological characterizations of the renormalizations and $\alpha$-limit sets are obtained via consecutive renormalizations. Some properties of periodic renormalizations are collected in Appendix.
Citation: Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979
References:
[1]

V. S. Afraimovich, V. V. Bykov and L. P. Shil'nikov., On the appearance and structure of the Lorenz attractor,, Dokl. Acad. Sci. USSR, 234 (1977), 336.   Google Scholar

[2]

L. Alsedà and A. Falcò, On the topological dynamics and phase-locking renormalization of Lorenz-like maps,, Ann. Inst. Fourier, 53 (2003), 859.   Google Scholar

[3]

L. Alsedà, J. Llibre, M. Misiurewicz and C. Tresser, Periods and entropy for Lorenz-like maps,, Ann. Inst. Fourier, 39 (1989), 929.   Google Scholar

[4]

K. M. Brucks and H. Bruin, "Topics From One-Dimensional Dynamics,", London Mathematical Society Student Texts, 62 (2004).   Google Scholar

[5]

Y. Choi, Attractors from one dimensional Lorenz-like maps,, Discrete Contin. Dyn. Syst., 11 (2004), 715.  doi: 10.3934/dcds.2004.11.715.  Google Scholar

[6]

H. F. Cui and Y. M. Ding, The $\alpha$-limit sets of a unimodal map without homtervals,, Topology Appl., 157 (2010), 22.  doi: 10.1016/j.topol.2009.04.054.  Google Scholar

[7]

H. F. Cui and Y. M. Ding, Renormalization and conjugacy of piecewise linear Lorenz maps,, preprint, ().   Google Scholar

[8]

Y. M. Ding and W. T. Fan, The asymptotic periodicity of Lorenz maps,, Acta Math. Sci., 19 (1999), 114.   Google Scholar

[9]

L. Flatto and J. C. Lagarias, The lap-counting function for linear mod one transformations. I. Explicit formulas and renormalizability,, Ergodic Theory Dynam. Systems, 16 (1996), 451.  doi: 10.1017/S0143385700008920.  Google Scholar

[10]

P. Glendinning, Topological conjugation of Lorenz maps by $\beta$-transformations,, Math. Proc. Camb. Phil. Soc., 107 (1990), 401.  doi: 10.1017/S0305004100068675.  Google Scholar

[11]

P. Glendinning and T. Hall, Zeros of the kneading invariant and topological entropy for Lorenz maps,, Nonlinearity, 9 (1996), 999.  doi: 10.1088/0951-7715/9/4/010.  Google Scholar

[12]

P. Glendingning and C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps,, Physica D, 62 (1993), 22.  doi: 10.1016/0167-2789(93)90270-B.  Google Scholar

[13]

J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors,, IHES Publ. Math., 50 (1979), 59.   Google Scholar

[14]

J. H. Hubbard and C. Sparrow, The classification of topologically expansive Lorenz maps,, Comm. Pure Appl. Math., 43 (1990), 431.  doi: 10.1002/cpa.3160430402.  Google Scholar

[15]

G. Keller and P. Matthias, Topological and measurable dynamics of Lorenz maps,, in, (2001), 333.   Google Scholar

[16]

S. Luzzatto, I. Melbourne and F. Paccaut, The Lorenz attractor is mixing,, Commun. Math. Phys., 260 (2005), 393.  doi: 10.1007/s00220-005-1411-9.  Google Scholar

[17]

S. Luzzatto and W. Tucker, Non-uniformly expanding dynamics in maps with singularities and criticalities,, Inst. Hautes Études Sci. Publ. Math. No., 89 (1999), 179.   Google Scholar

[18]

M. I. Malkin, Rotation intervals and the dynamics of Lorenz type mappings,, Selecta Mathematica Sovietica, 10 (1991), 265.   Google Scholar

[19]

M.Martens and W. de Melo, Universal models for Lorenz maps,, Ergodic Theory Dynam. Systems, 21 (2001), 833.  doi: 10.1017/S0143385701001420.  Google Scholar

[20]

C. A. Morales, M. J. Pacifico and B. San Martin, Expanding Lorenz attractors through resonant double homoclinic loops,, SIAM J. Math. Anal., 36 (2005), 1836.  doi: 10.1137/S0036141002415785.  Google Scholar

[21]

C. A. Morales, M. J. Pacifico and B. San Martin, Contracting Lorenz attractors through resonant double homoclinic loops,, SIAM J. Math. Anal., 38 (2006), 309.  doi: 10.1137/S0036141004443907.  Google Scholar

[22]

M. R. Palmer, "On the Classification of Measure Preserving Transformations of Lebesgue Spaces,", Ph. D. thesis, (1979).   Google Scholar

[23]

W. Parry, Symbolic dynamics and transformations of the unit interval,, Trans. Amer. Math. Soc., 122 (1966), 368.  doi: 10.1090/S0002-9947-1966-0197683-5.  Google Scholar

[24]

W. Parry, The Lorenz attractor and a related population model,, in, 729 (1979), 169.   Google Scholar

[25]

C. Robinson, Nonsymmetric Lorenz attractors from a homoclinic bifurcation,, SIAM J. Math. Anal., 32 (2000), 119.  doi: 10.1137/S0036141098343598.  Google Scholar

[26]

L. Silva and R. Sousa, Topological invariants and renormalization of Lorenz maps,, Phys. D, 162 (2002), 233.  doi: 10.1016/S0167-2789(01)00369-4.  Google Scholar

[27]

C. Sparrow, "The Lorenz Equations: Bifurcations, Chaos and Strange Attractors,", Applied Mathematical Sciences, 41 (1982).   Google Scholar

[28]

W. Tucker, The Lorenz attractor exists,, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197.   Google Scholar

[29]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53.   Google Scholar

[30]

M. Viana, What's new on Lorenz strange attractors?,, Math. Intelligencer, 22 (2000), 6.  doi: 10.1007/BF03025276.  Google Scholar

[31]

R. F. Williams, The structure of Lorenz attractors,, IHES Publ. Math., 50 (1979), 73.   Google Scholar

show all references

References:
[1]

V. S. Afraimovich, V. V. Bykov and L. P. Shil'nikov., On the appearance and structure of the Lorenz attractor,, Dokl. Acad. Sci. USSR, 234 (1977), 336.   Google Scholar

[2]

L. Alsedà and A. Falcò, On the topological dynamics and phase-locking renormalization of Lorenz-like maps,, Ann. Inst. Fourier, 53 (2003), 859.   Google Scholar

[3]

L. Alsedà, J. Llibre, M. Misiurewicz and C. Tresser, Periods and entropy for Lorenz-like maps,, Ann. Inst. Fourier, 39 (1989), 929.   Google Scholar

[4]

K. M. Brucks and H. Bruin, "Topics From One-Dimensional Dynamics,", London Mathematical Society Student Texts, 62 (2004).   Google Scholar

[5]

Y. Choi, Attractors from one dimensional Lorenz-like maps,, Discrete Contin. Dyn. Syst., 11 (2004), 715.  doi: 10.3934/dcds.2004.11.715.  Google Scholar

[6]

H. F. Cui and Y. M. Ding, The $\alpha$-limit sets of a unimodal map without homtervals,, Topology Appl., 157 (2010), 22.  doi: 10.1016/j.topol.2009.04.054.  Google Scholar

[7]

H. F. Cui and Y. M. Ding, Renormalization and conjugacy of piecewise linear Lorenz maps,, preprint, ().   Google Scholar

[8]

Y. M. Ding and W. T. Fan, The asymptotic periodicity of Lorenz maps,, Acta Math. Sci., 19 (1999), 114.   Google Scholar

[9]

L. Flatto and J. C. Lagarias, The lap-counting function for linear mod one transformations. I. Explicit formulas and renormalizability,, Ergodic Theory Dynam. Systems, 16 (1996), 451.  doi: 10.1017/S0143385700008920.  Google Scholar

[10]

P. Glendinning, Topological conjugation of Lorenz maps by $\beta$-transformations,, Math. Proc. Camb. Phil. Soc., 107 (1990), 401.  doi: 10.1017/S0305004100068675.  Google Scholar

[11]

P. Glendinning and T. Hall, Zeros of the kneading invariant and topological entropy for Lorenz maps,, Nonlinearity, 9 (1996), 999.  doi: 10.1088/0951-7715/9/4/010.  Google Scholar

[12]

P. Glendingning and C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps,, Physica D, 62 (1993), 22.  doi: 10.1016/0167-2789(93)90270-B.  Google Scholar

[13]

J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors,, IHES Publ. Math., 50 (1979), 59.   Google Scholar

[14]

J. H. Hubbard and C. Sparrow, The classification of topologically expansive Lorenz maps,, Comm. Pure Appl. Math., 43 (1990), 431.  doi: 10.1002/cpa.3160430402.  Google Scholar

[15]

G. Keller and P. Matthias, Topological and measurable dynamics of Lorenz maps,, in, (2001), 333.   Google Scholar

[16]

S. Luzzatto, I. Melbourne and F. Paccaut, The Lorenz attractor is mixing,, Commun. Math. Phys., 260 (2005), 393.  doi: 10.1007/s00220-005-1411-9.  Google Scholar

[17]

S. Luzzatto and W. Tucker, Non-uniformly expanding dynamics in maps with singularities and criticalities,, Inst. Hautes Études Sci. Publ. Math. No., 89 (1999), 179.   Google Scholar

[18]

M. I. Malkin, Rotation intervals and the dynamics of Lorenz type mappings,, Selecta Mathematica Sovietica, 10 (1991), 265.   Google Scholar

[19]

M.Martens and W. de Melo, Universal models for Lorenz maps,, Ergodic Theory Dynam. Systems, 21 (2001), 833.  doi: 10.1017/S0143385701001420.  Google Scholar

[20]

C. A. Morales, M. J. Pacifico and B. San Martin, Expanding Lorenz attractors through resonant double homoclinic loops,, SIAM J. Math. Anal., 36 (2005), 1836.  doi: 10.1137/S0036141002415785.  Google Scholar

[21]

C. A. Morales, M. J. Pacifico and B. San Martin, Contracting Lorenz attractors through resonant double homoclinic loops,, SIAM J. Math. Anal., 38 (2006), 309.  doi: 10.1137/S0036141004443907.  Google Scholar

[22]

M. R. Palmer, "On the Classification of Measure Preserving Transformations of Lebesgue Spaces,", Ph. D. thesis, (1979).   Google Scholar

[23]

W. Parry, Symbolic dynamics and transformations of the unit interval,, Trans. Amer. Math. Soc., 122 (1966), 368.  doi: 10.1090/S0002-9947-1966-0197683-5.  Google Scholar

[24]

W. Parry, The Lorenz attractor and a related population model,, in, 729 (1979), 169.   Google Scholar

[25]

C. Robinson, Nonsymmetric Lorenz attractors from a homoclinic bifurcation,, SIAM J. Math. Anal., 32 (2000), 119.  doi: 10.1137/S0036141098343598.  Google Scholar

[26]

L. Silva and R. Sousa, Topological invariants and renormalization of Lorenz maps,, Phys. D, 162 (2002), 233.  doi: 10.1016/S0167-2789(01)00369-4.  Google Scholar

[27]

C. Sparrow, "The Lorenz Equations: Bifurcations, Chaos and Strange Attractors,", Applied Mathematical Sciences, 41 (1982).   Google Scholar

[28]

W. Tucker, The Lorenz attractor exists,, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197.   Google Scholar

[29]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53.   Google Scholar

[30]

M. Viana, What's new on Lorenz strange attractors?,, Math. Intelligencer, 22 (2000), 6.  doi: 10.1007/BF03025276.  Google Scholar

[31]

R. F. Williams, The structure of Lorenz attractors,, IHES Publ. Math., 50 (1979), 73.   Google Scholar

[1]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[2]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[3]

Oliver Díaz-Espinosa, Rafael de la Llave. Renormalization and central limit theorem for critical dynamical systems with weak external noise. Journal of Modern Dynamics, 2007, 1 (3) : 477-543. doi: 10.3934/jmd.2007.1.477

[4]

Karla Díaz-Ordaz. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 159-176. doi: 10.3934/dcds.2006.15.159

[5]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[6]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[7]

Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110

[8]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[9]

Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173

[10]

Francisco Balibrea, J.L. García Guirao, J.I. Muñoz Casado. A triangular map on $I^{2}$ whose $\omega$-limit sets are all compact intervals of $\{0\}\times I$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 983-994. doi: 10.3934/dcds.2002.8.983

[11]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[12]

Shin Kiriki, Ming-Chia Li, Teruhiko Soma. Geometric Lorenz flows with historic behavior. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7021-7028. doi: 10.3934/dcds.2016105

[13]

Fuchen Zhang, Xiaofeng Liao, Guangyun Zhang, Chunlai Mu, Min Xiao, Ping Zhou. Dynamical behaviors of a generalized Lorenz family. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3707-3720. doi: 10.3934/dcdsb.2017184

[14]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[15]

Paolo Secchi. An alpha model for compressible fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351

[16]

Radu Saghin. Note on homology of expanding foliations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349

[17]

Carlangelo Liverani. A footnote on expanding maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3741-3751. doi: 10.3934/dcds.2013.33.3741

[18]

Lan Wen. On the preperiodic set. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[19]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[20]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]