\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Recurrence for random dynamical systems

Abstract Related Papers Cited by
  • This paper is a first step in the study of the recurrence behaviour in random dynamical systems and randomly perturbed dynamical systems. In particular we define a concept of quenched and annealed return times for systems generated by the composition of random maps. We moreover prove that for super-polynomially mixing systems, the random recurrence rate is equal to the local dimension of the stationary measure.
    Mathematics Subject Classification: Primary: 37H, 37C45, 37B20; Secondary: 37A25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

    [2]

    A. Ayyer and M.Stenlund, Exponential decay of correlations for randomly chosen hyperbolic toral automorphisms, Chaos, 17 (2007), 043116.doi: 10.1063/1.2785145.

    [3]

    V. Baladi, "Positive Transfer Operators and Decay of Correlations," Advances Series in Nonlinear Dynamics, 16, World Scientific Publishing Co. Inc., River Edge, NJ, 2000.

    [4]

    V. Baladi and L-S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys., 156 (1993), 355-385.doi: 10.1007/BF02098487.

    [5]

    L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys, 219 (2001), 443-463.doi: 10.1007/s002200100427.

    [6]

    R. Bhattacharya and O. Lee, Asymptotics of a class of Markov processes which are not in general irreducible, Ann. Probab., 16 (1988), 1333-1347.doi: 10.1214/aop/1176991694.

    [7]

    R. Bhattacharya and M. Majumdar, "Random Dynamical Systems: Theory and Applications," Cambridge University Press, Cambridge, 2007.doi: 10.1017/CBO9780511618628.

    [8]

    M. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.doi: 10.1007/BF01244320.

    [9]

    P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev., 41 (1999), 45-76.doi: 10.1137/S0036144598338446.

    [10]

    K. Falconer, "Techniques in Fractal Geometry," John Wiley & Sons Ltd., Chichester, 1997.

    [11]

    G. Keller and C. Liverani, Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141-152.

    [12]

    Y. Kifer, "Ergodic Theory of Random Transformations," Progress in Probability and Statistics, 10, Birkhäuser Boston Inc., Boston, MA, 1986.

    [13]

    Y. Kifer and P.-D. Liu, Random dynamics, Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, (2006), 379-499.doi: 10.1016/S1874-575X(06)80030-5.

    [14]

    P.-D. Liu, Dynamics of random transformations: Smooth ergodic theory, Ergodic Theory Dynam. Systems, 21 (2001), 1279-1319.doi: 10.1017/S0143385701001614.

    [15]

    T. Ohno, Asymptotic behaviours of dynamical systems with random parameters, Publ. Res. Inst. Math. Sci, 19 (1983), 83-98.doi: 10.2977/prims/1195182976.

    [16]

    M. Pollicott and M. Yuri, "Dynamical Systems and Ergodic Theory," London Mathematical Society Student Texts, 40, Cambridge University Press, Cambridge, 1998.

    [17]

    J. Rousseau and B. Saussol, Poincaré recurrence for observations, Trans. Amer. Math. Soc., 362 (2010), 5845-5859.doi: 10.1090/S0002-9947-2010-05078-0.

    [18]

    B. Saussol, Recurrence rate in rapidly mixing dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 259-267.doi: 10.3934/dcds.2006.15.259.

    [19]

    M. Viana, "Stochastic Dynamics of Deterministic Systems," Brazilian Math. Colloquium, IMPA, 1997.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return