Advanced Search
Article Contents
Article Contents

Recurrence for random dynamical systems

Abstract Related Papers Cited by
  • This paper is a first step in the study of the recurrence behaviour in random dynamical systems and randomly perturbed dynamical systems. In particular we define a concept of quenched and annealed return times for systems generated by the composition of random maps. We moreover prove that for super-polynomially mixing systems, the random recurrence rate is equal to the local dimension of the stationary measure.
    Mathematics Subject Classification: Primary: 37H, 37C45, 37B20; Secondary: 37A25.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.


    A. Ayyer and M.Stenlund, Exponential decay of correlations for randomly chosen hyperbolic toral automorphisms, Chaos, 17 (2007), 043116.doi: 10.1063/1.2785145.


    V. Baladi, "Positive Transfer Operators and Decay of Correlations," Advances Series in Nonlinear Dynamics, 16, World Scientific Publishing Co. Inc., River Edge, NJ, 2000.


    V. Baladi and L-S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys., 156 (1993), 355-385.doi: 10.1007/BF02098487.


    L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys, 219 (2001), 443-463.doi: 10.1007/s002200100427.


    R. Bhattacharya and O. Lee, Asymptotics of a class of Markov processes which are not in general irreducible, Ann. Probab., 16 (1988), 1333-1347.doi: 10.1214/aop/1176991694.


    R. Bhattacharya and M. Majumdar, "Random Dynamical Systems: Theory and Applications," Cambridge University Press, Cambridge, 2007.doi: 10.1017/CBO9780511618628.


    M. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.doi: 10.1007/BF01244320.


    P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev., 41 (1999), 45-76.doi: 10.1137/S0036144598338446.


    K. Falconer, "Techniques in Fractal Geometry," John Wiley & Sons Ltd., Chichester, 1997.


    G. Keller and C. Liverani, Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141-152.


    Y. Kifer, "Ergodic Theory of Random Transformations," Progress in Probability and Statistics, 10, Birkhäuser Boston Inc., Boston, MA, 1986.


    Y. Kifer and P.-D. Liu, Random dynamics, Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, (2006), 379-499.doi: 10.1016/S1874-575X(06)80030-5.


    P.-D. Liu, Dynamics of random transformations: Smooth ergodic theory, Ergodic Theory Dynam. Systems, 21 (2001), 1279-1319.doi: 10.1017/S0143385701001614.


    T. Ohno, Asymptotic behaviours of dynamical systems with random parameters, Publ. Res. Inst. Math. Sci, 19 (1983), 83-98.doi: 10.2977/prims/1195182976.


    M. Pollicott and M. Yuri, "Dynamical Systems and Ergodic Theory," London Mathematical Society Student Texts, 40, Cambridge University Press, Cambridge, 1998.


    J. Rousseau and B. Saussol, Poincaré recurrence for observations, Trans. Amer. Math. Soc., 362 (2010), 5845-5859.doi: 10.1090/S0002-9947-2010-05078-0.


    B. Saussol, Recurrence rate in rapidly mixing dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 259-267.doi: 10.3934/dcds.2006.15.259.


    M. Viana, "Stochastic Dynamics of Deterministic Systems," Brazilian Math. Colloquium, IMPA, 1997.

  • 加载中

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint