November  2011, 30(4): 1037-1054. doi: 10.3934/dcds.2011.30.1037

Asymptotics for a generalized Cahn-Hilliard equation with forcing terms

1. 

Department of Applied Mathematics, University of Crete, 714 09 Heraklion, Greece, Greece

2. 

Department of Mathematics, University of Crete, GR-714 09 Heraklion, Crete, Greece

Received  February 2010 Revised  July 2010 Published  May 2011

Motivated by the physical theory of Critical Dynamics the Cahn-Hilliard equation on a bounded space domain is considered and forcing terms of general type are introduced. For such a rescaled equation the limiting inter-face problem is studied and the following are derived: (i) asymptotic results indicating that the forcing terms may slow down the equilibrium locally or globally, (ii) the sharp interface limit problem in the multidimensional case demonstrating a local influence in phase transitions of terms that stem from the chemical potential, while free energy independent terms act on the rest of the domain, (iii) a limiting non-homogeneous linear diffusion equation for the one-dimensional problem in the case of deterministic forcing term that follows the white noise scaling.
Citation: Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037
References:
[1]

N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rat. Mech. Anal., 128 (1994), 165.  doi: 10.1007/BF00375025.  Google Scholar

[2]

N. D. Alikakos, G. Fusco and G. Karali, Ostwald ripening in two dimensions- The rigorous derivation of the equations from Mullins-Sekerka dynamics,, Journ. of Differential Equations, 205 (2004), 1.   Google Scholar

[3]

T. Antal, M. Droz, J. Magnin and Z. Rácz, Formation of liesengang patterns: A spinodal decomposition scenarion,, Phys. Rev. Lett., 83 (1999), 2880.  doi: 10.1103/PhysRevLett.83.2880.  Google Scholar

[4]

G. Belletini, M. S. Gelli, S. Luckhaus and M. Novaga, Deterministic equivalent for the Allen Cahn energy of a scaling law in the Ising model,, Calc. Var., 26 (2006), 429.  doi: 10.1007/s00526-006-0012-6.  Google Scholar

[5]

P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part I,, Journ. of Differential Equations, 111 (1994), 421.   Google Scholar

[6]

P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part II,, Journ. of Differential Equations, 117 (1995), 165.   Google Scholar

[7]

D. Blömker, S. Maier-Paape and T. Wanner, Phase separation in stochastic Cahn-Hilliard models,, in, (2005), 1.   Google Scholar

[8]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.  doi: 10.1063/1.1744102.  Google Scholar

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system II. Thermodynamic basis,, J. Chem. Phys., 30 (1959), 1121.  doi: 10.1063/1.1730145.  Google Scholar

[10]

G. Cagninalp and P. C. Fife, Dynamics of layered interfaces arising from phase boundaries,, SIAM J. Appl. Math., 48 (1988), 506.  doi: 10.1137/0148029.  Google Scholar

[11]

H. Cook, Brownian motion in spinodal decomposition,, Acta Metallurgica, 18 (1970), 297.  doi: 10.1016/0001-6160(70)90144-6.  Google Scholar

[12]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[13]

G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation,, Nonlinear Anal., 26 (1996), 241.  doi: 10.1016/0362-546X(94)00277-O.  Google Scholar

[14]

A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection,, Ann. Probab., 35 (2007), 1706.  doi: 10.1214/009117906000000773.  Google Scholar

[15]

Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises,, SIAM J. Num. Anal., 40 (2002), 1421.  doi: 10.1137/S0036142901387956.  Google Scholar

[16]

C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Rat. Mech. Anal., 96 (1986), 339.  doi: 10.1007/BF00251803.  Google Scholar

[17]

N. Elezovic and A. Mikelic, On the stochastic Cahn-Hilliard equation,, Nonlinear Anal., 16 (1991), 1169.  doi: 10.1016/0362-546X(91)90204-E.  Google Scholar

[18]

X. Chen, X. Hong and F. Yi, Existence, uniqueness and regularity of solutions of Mullins-Sekerka problem,, Comm. Partial Differential Equations, 21 (1996), 1705.   Google Scholar

[19]

P. C. Fife, Models for phase separation and their mathematics,, El. Journ. Diff. E., 48 (2000), 1.   Google Scholar

[20]

T. Funaki, The scaling limit for a Stochastic PDE and the separation of phases,, Probab. Theory Relat. Fields., 102 (1995), 221.  doi: 10.1007/BF01213390.  Google Scholar

[21]

T. Funaki, Singular limit for stochastic reaction-diffusion equation and generation of random interfaces,, Acta Math. Sinica, 15 (1999), 407.  doi: 10.1007/BF02650735.  Google Scholar

[22]

T. Funaki, Singular limit for reaction-diffusion equation with self-similar Gaussian noise,, in Proceedings of Taniguchi symposium, (2000), 132.   Google Scholar

[23]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[24]

M. Hildebrand and A. S. Mikhailov, Mesoscopic modeling in the kinetic theory of adsorbates,, J. Phys. Chem., 100 (1996), 19089.  doi: 10.1021/jp961668w.  Google Scholar

[25]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, J. Rev. Mod. Phys., 49 (1977), 435.  doi: 10.1103/RevModPhys.49.435.  Google Scholar

[26]

G. Kallianpur and J. Xiong, "Stochastic Differential Equations in Infinite Dimensional Spaces,", Institute of Mathematical Statistics, 26 (1995).   Google Scholar

[27]

G. Karali, Phase boundaries motion preserving the volume of each connected component,, Asymptotic Analysis, 49 (2006), 17.   Google Scholar

[28]

G. Karali and M. A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.   Google Scholar

[29]

M. A. Katsoulakis and D. G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Letters, 84 (2000), 1511.  doi: 10.1103/PhysRevLett.84.1511.  Google Scholar

[30]

K. Kitahara, Y. Oono and D. Jasnow, Phase separation dynamics and external force field,, Mod. Phys. Letters B, 2 (1988), 765.  doi: 10.1142/S0217984988000461.  Google Scholar

[31]

M. Katsoulakis, G. Kossioris and O. Lakkis, Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem,, Interfaces Free Bound, 9 (2007), 1.  doi: 10.4171/IFB/154.  Google Scholar

[32]

G. Kossioris and G. Zouraris, Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise,, ESAIM: Mathematical Modelling and Numerical Analysis, ().   Google Scholar

[33]

L. D. Landau and E. M. Lifshitz, "Statistical Physics Part 1,", Course of Theoretical Physics, 5 (1994).   Google Scholar

[34]

J. S. Langer, Theory of spinodal decomposition in alloys,, Ann. of Phys., 65 (1971), 53.  doi: 10.1016/0003-4916(71)90162-X.  Google Scholar

[35]

Di Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise,, Comm. Math. Sci., 1 (2003), 361.   Google Scholar

[36]

B. Øksendal, "Stochastic Differential Equations,", Springer, (2003).   Google Scholar

[37]

R. L. Pego, Front migration in the non-linear Cahn-Hilliard equation,, Proc. R. Soc. Lond. A, 422 (1989), 261.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[38]

J. Printems, On the discretization in time of parabolic stochastic partial differential equations,, Mathematical Modelling and Numerical Analysis, 35 (2001), 1055.  doi: 10.1051/m2an:2001148.  Google Scholar

[39]

T. M. Rogers, K. R. Elder and R. C. Desai, Numerical study of the late stages of spinodal decomposition,, Phys. Rev. B, 37 (1988), 9638.  doi: 10.1103/PhysRevB.37.9638.  Google Scholar

[40]

Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise,, BIT Numerical Mathematics, 44 (2004), 829.  doi: 10.1007/s10543-004-3755-5.  Google Scholar

[41]

Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations,, SIAM J. Numer. Anal., 43 (2005), 1363.  doi: 10.1137/040605278.  Google Scholar

[42]

J. B. Walsh, An introduction to stochastic partial differential equations,, Lecture Notes in Math., 984 (1986), 265.  doi: 10.1007/BFb0074920.  Google Scholar

[43]

Quan-Fang Wang and Shin-ichi Nakagiri, Weak solutions of Cahn-Hilliard equations having forcing terms and optimal control problems,, Mathematical Models in Functional Equations, 1128 (2000), 172.   Google Scholar

show all references

References:
[1]

N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rat. Mech. Anal., 128 (1994), 165.  doi: 10.1007/BF00375025.  Google Scholar

[2]

N. D. Alikakos, G. Fusco and G. Karali, Ostwald ripening in two dimensions- The rigorous derivation of the equations from Mullins-Sekerka dynamics,, Journ. of Differential Equations, 205 (2004), 1.   Google Scholar

[3]

T. Antal, M. Droz, J. Magnin and Z. Rácz, Formation of liesengang patterns: A spinodal decomposition scenarion,, Phys. Rev. Lett., 83 (1999), 2880.  doi: 10.1103/PhysRevLett.83.2880.  Google Scholar

[4]

G. Belletini, M. S. Gelli, S. Luckhaus and M. Novaga, Deterministic equivalent for the Allen Cahn energy of a scaling law in the Ising model,, Calc. Var., 26 (2006), 429.  doi: 10.1007/s00526-006-0012-6.  Google Scholar

[5]

P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part I,, Journ. of Differential Equations, 111 (1994), 421.   Google Scholar

[6]

P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part II,, Journ. of Differential Equations, 117 (1995), 165.   Google Scholar

[7]

D. Blömker, S. Maier-Paape and T. Wanner, Phase separation in stochastic Cahn-Hilliard models,, in, (2005), 1.   Google Scholar

[8]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.  doi: 10.1063/1.1744102.  Google Scholar

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system II. Thermodynamic basis,, J. Chem. Phys., 30 (1959), 1121.  doi: 10.1063/1.1730145.  Google Scholar

[10]

G. Cagninalp and P. C. Fife, Dynamics of layered interfaces arising from phase boundaries,, SIAM J. Appl. Math., 48 (1988), 506.  doi: 10.1137/0148029.  Google Scholar

[11]

H. Cook, Brownian motion in spinodal decomposition,, Acta Metallurgica, 18 (1970), 297.  doi: 10.1016/0001-6160(70)90144-6.  Google Scholar

[12]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[13]

G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation,, Nonlinear Anal., 26 (1996), 241.  doi: 10.1016/0362-546X(94)00277-O.  Google Scholar

[14]

A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection,, Ann. Probab., 35 (2007), 1706.  doi: 10.1214/009117906000000773.  Google Scholar

[15]

Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises,, SIAM J. Num. Anal., 40 (2002), 1421.  doi: 10.1137/S0036142901387956.  Google Scholar

[16]

C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Rat. Mech. Anal., 96 (1986), 339.  doi: 10.1007/BF00251803.  Google Scholar

[17]

N. Elezovic and A. Mikelic, On the stochastic Cahn-Hilliard equation,, Nonlinear Anal., 16 (1991), 1169.  doi: 10.1016/0362-546X(91)90204-E.  Google Scholar

[18]

X. Chen, X. Hong and F. Yi, Existence, uniqueness and regularity of solutions of Mullins-Sekerka problem,, Comm. Partial Differential Equations, 21 (1996), 1705.   Google Scholar

[19]

P. C. Fife, Models for phase separation and their mathematics,, El. Journ. Diff. E., 48 (2000), 1.   Google Scholar

[20]

T. Funaki, The scaling limit for a Stochastic PDE and the separation of phases,, Probab. Theory Relat. Fields., 102 (1995), 221.  doi: 10.1007/BF01213390.  Google Scholar

[21]

T. Funaki, Singular limit for stochastic reaction-diffusion equation and generation of random interfaces,, Acta Math. Sinica, 15 (1999), 407.  doi: 10.1007/BF02650735.  Google Scholar

[22]

T. Funaki, Singular limit for reaction-diffusion equation with self-similar Gaussian noise,, in Proceedings of Taniguchi symposium, (2000), 132.   Google Scholar

[23]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[24]

M. Hildebrand and A. S. Mikhailov, Mesoscopic modeling in the kinetic theory of adsorbates,, J. Phys. Chem., 100 (1996), 19089.  doi: 10.1021/jp961668w.  Google Scholar

[25]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, J. Rev. Mod. Phys., 49 (1977), 435.  doi: 10.1103/RevModPhys.49.435.  Google Scholar

[26]

G. Kallianpur and J. Xiong, "Stochastic Differential Equations in Infinite Dimensional Spaces,", Institute of Mathematical Statistics, 26 (1995).   Google Scholar

[27]

G. Karali, Phase boundaries motion preserving the volume of each connected component,, Asymptotic Analysis, 49 (2006), 17.   Google Scholar

[28]

G. Karali and M. A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.   Google Scholar

[29]

M. A. Katsoulakis and D. G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Letters, 84 (2000), 1511.  doi: 10.1103/PhysRevLett.84.1511.  Google Scholar

[30]

K. Kitahara, Y. Oono and D. Jasnow, Phase separation dynamics and external force field,, Mod. Phys. Letters B, 2 (1988), 765.  doi: 10.1142/S0217984988000461.  Google Scholar

[31]

M. Katsoulakis, G. Kossioris and O. Lakkis, Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem,, Interfaces Free Bound, 9 (2007), 1.  doi: 10.4171/IFB/154.  Google Scholar

[32]

G. Kossioris and G. Zouraris, Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise,, ESAIM: Mathematical Modelling and Numerical Analysis, ().   Google Scholar

[33]

L. D. Landau and E. M. Lifshitz, "Statistical Physics Part 1,", Course of Theoretical Physics, 5 (1994).   Google Scholar

[34]

J. S. Langer, Theory of spinodal decomposition in alloys,, Ann. of Phys., 65 (1971), 53.  doi: 10.1016/0003-4916(71)90162-X.  Google Scholar

[35]

Di Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise,, Comm. Math. Sci., 1 (2003), 361.   Google Scholar

[36]

B. Øksendal, "Stochastic Differential Equations,", Springer, (2003).   Google Scholar

[37]

R. L. Pego, Front migration in the non-linear Cahn-Hilliard equation,, Proc. R. Soc. Lond. A, 422 (1989), 261.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[38]

J. Printems, On the discretization in time of parabolic stochastic partial differential equations,, Mathematical Modelling and Numerical Analysis, 35 (2001), 1055.  doi: 10.1051/m2an:2001148.  Google Scholar

[39]

T. M. Rogers, K. R. Elder and R. C. Desai, Numerical study of the late stages of spinodal decomposition,, Phys. Rev. B, 37 (1988), 9638.  doi: 10.1103/PhysRevB.37.9638.  Google Scholar

[40]

Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise,, BIT Numerical Mathematics, 44 (2004), 829.  doi: 10.1007/s10543-004-3755-5.  Google Scholar

[41]

Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations,, SIAM J. Numer. Anal., 43 (2005), 1363.  doi: 10.1137/040605278.  Google Scholar

[42]

J. B. Walsh, An introduction to stochastic partial differential equations,, Lecture Notes in Math., 984 (1986), 265.  doi: 10.1007/BFb0074920.  Google Scholar

[43]

Quan-Fang Wang and Shin-ichi Nakagiri, Weak solutions of Cahn-Hilliard equations having forcing terms and optimal control problems,, Mathematical Models in Functional Equations, 1128 (2000), 172.   Google Scholar

[1]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[2]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[3]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[4]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[10]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[14]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[15]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[16]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[17]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A socp relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[18]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[19]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (7)

[Back to Top]