November  2011, 30(4): 1055-1081. doi: 10.3934/dcds.2011.30.1055

On the location of a peak point of a least energy solution for Hénon equation

1. 

Department of Mathematics & PMI, POSTECH, Pohang, Kyungbuk 790-784

2. 

Department of Mathematics Education, Gwangju National University of Education, 93 Pilmunlo Bugku, Gwangju 500-703

3. 

Department of Mathematics, POSTECH, Pohang, Kyungbuk 790-784

Received  May 2010 Revised  February 2011 Published  May 2011

Let $\Omega $ be a smooth bounded domain. We are concerned about the following nonlinear elliptic problem:

$\Delta u + |x|^{\alpha}u^{p} = 0, \ u > 0 \quad$ in $\Omega$,
$\ u = 0 \quad$ on $\partial \Omega $,

where $\alpha > 0, p \in (1,\frac{n+2}{n-2}).$ In this paper, we show that for $n \ge 8$, a maximum point $x_{\alpha }$ of a least energy solution of above problem converges to a point $x_0 \in \partial^$*$ \Omega $ satisfying $H(x_0) = \min_$$\w \in \partial ^$*$ \Omega$$H( w )$ as $\alpha \to \infty,$ where $H$ is the mean curvature on $\partial \Omega $ and $\partial ^$*$\Omega \equiv \{ x \in \partial \Omega : |x| \ge |y|$ for any $y \in \Omega \}.$
Citation: Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055
References:
[1]

T. Aubin, "Some Nonlinear Problems In Riemannian Geometry,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

Adimurthi, G. Mancini and S. L. Yadava, The role of the mean curvature in semilinear Neumann problem involving critical exponent,, Comm. in Partial Differential Equations, 20 (1995), 591.   Google Scholar

[3]

J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic equations,, J. Differential Equations, 163 (2000), 429.   Google Scholar

[4]

J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic equations, II,, J. Differential Equations, 173 (2001), 321.   Google Scholar

[5]

J. Byeon, Singularly perturbed nonlinear Neumann problems with a general nonlinearity,, J. Differential Equations, 244 (2008), 2473.   Google Scholar

[6]

J. Byeon and J. Park, Singularly perturbed nonlinear elliptic problems on manifolds,, Calc. Var. and Partial Differential Equations, 24 (2005), 459.   Google Scholar

[7]

J. Byeon and Z. Q. Wang, On the Hénon equation: Asymptotic profile of ground states,, Ann. Inst. H. Poincare Anal. Non Lineaire, 23 (2006), 803.  doi: 10.1016/j.anihpc.2006.04.001.  Google Scholar

[8]

J. Byeon and Z. Q. Wang, On the Hénon equation: Asymptotic profile of ground states II,, J. Differential Equations, 216 (2005), 78.   Google Scholar

[9]

D. Cao and S. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation,, J. Math. Anal. Appl., 278 (2003), 1.  doi: 10.1016/S0022-247X(02)00292-5.  Google Scholar

[10]

D. Cao, S. Peng and S. Yan, Asymptotic behaviour of ground state solutions for the Hénon equation,, IMA J. Appl. Math., 74 (2009), 468.  doi: 10.1093/imamat/hxn035.  Google Scholar

[11]

M. Gazzini and E. Serra, The Neumann problem for the Hénon equation, trace inequalities and Steklov eigenvalues,, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008), 281.  doi: 10.1016/j.anihpc.2006.09.003.  Google Scholar

[12]

G. Chen, W. M. Ni and J. Zhou, Algorithms and visualization for solutions of nonlinear ellptic equations,, Inter. Jour. Bifur. Chaos, 10 (2000), 1565.  doi: 10.1142/S0218127400001006.  Google Scholar

[13]

M. del Pino and P. L. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting,, Indiana Univ. Math. J., 48 (1999), 883.  doi: 10.1512/iumj.1999.48.1596.  Google Scholar

[14]

G. F. D. Duff, Partial differential equations,, in, (1956).   Google Scholar

[15]

P. Esposito, A. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $\mathbb R^2$,, J. Anal. Math., 100 (2006), 249.  doi: 10.1007/BF02916763.  Google Scholar

[16]

B. Gidas, W. N. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2nd edition, (1983).   Google Scholar

[18]

M. Gruter and K. Widman, The Green function for uniformly elliptic equations,, Manuscripta Math., 37 (1982), 303.  doi: 10.1007/BF01166225.  Google Scholar

[19]

N. Hirano, Existence of positive solutions for the Hénon equation involving critical Sobolev terms,, J. Differential Equations, 247 (2009), 1311.   Google Scholar

[20]

M. Hénon, Numerical experiments on the spherical stellar systems,, Astronomy and Astrophysics, 24 (1973), 229.   Google Scholar

[21]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Mathematics, 1150 (1985).   Google Scholar

[22]

Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations,, Comm. Pure Appl. Math., 51 (1998), 1445.  doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.0.CO;2-Z.  Google Scholar

[23]

W. M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications,, Indiana Univ. Math. J., 31(6) (1982), 801.  doi: 10.1512/iumj.1982.31.31056.  Google Scholar

[24]

W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819.  doi: 10.1002/cpa.3160440705.  Google Scholar

[25]

W. M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem,, Duke Math. J., 70 (1993), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[26]

W. M. Ni, X. B. Pan and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents,, Duke Math. J., 67 (1992), 1.  doi: 10.1215/S0012-7094-92-06701-9.  Google Scholar

[27]

W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems,, Comm. Pure Appl. Math., 48 (1995), 731.  doi: 10.1002/cpa.3160480704.  Google Scholar

[28]

A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth,, Math. Z., 256 (2007), 75.  doi: 10.1007/s00209-006-0060-9.  Google Scholar

[29]

S. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0.$,, Soviet Math. Dokl., 6 (1965), 1408.   Google Scholar

[30]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984).   Google Scholar

[31]

O. Rey, Boundary effect for an elliptic Neumann problem with critical nonlinearity,, Comm. in Partial Differential Equations, 22 (1997), 1055.   Google Scholar

[32]

S. Secchi and E. Serra, Symmetry breaking results for problems with exponential growth in the unit disk,, Commun. Contemp. Math., 8 (2006), 823.  doi: 10.1142/S0219199706002295.  Google Scholar

[33]

E. Serra, Non radial positive solutions for the Hénon equation with critical growth,, Calc. Var. Partial Differential Equations, 23 (2005), 301.   Google Scholar

[34]

M. Struwe, "Variational Methods; Application to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990).   Google Scholar

[35]

D. Smets, J. Su and M. Willem, Nonradial ground states for the Hénon equation,, Communications in Contemporary Mathematics, 4 (2002), 467.  doi: 10.1142/S0219199702000725.  Google Scholar

[36]

N. Varopoulos, Potential theory and diffusion on Riemannian manifolds, conference on harmonic analysis in honor of Antoni Zygmund,, Wadsworth Math. Ser., (1983), 821.   Google Scholar

[37]

J. Wei and S. Yan, Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth,, J. Math. Pures Appl., 88 (2007), 350.  doi: 10.1016/j.matpur.2007.07.001.  Google Scholar

show all references

References:
[1]

T. Aubin, "Some Nonlinear Problems In Riemannian Geometry,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

Adimurthi, G. Mancini and S. L. Yadava, The role of the mean curvature in semilinear Neumann problem involving critical exponent,, Comm. in Partial Differential Equations, 20 (1995), 591.   Google Scholar

[3]

J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic equations,, J. Differential Equations, 163 (2000), 429.   Google Scholar

[4]

J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic equations, II,, J. Differential Equations, 173 (2001), 321.   Google Scholar

[5]

J. Byeon, Singularly perturbed nonlinear Neumann problems with a general nonlinearity,, J. Differential Equations, 244 (2008), 2473.   Google Scholar

[6]

J. Byeon and J. Park, Singularly perturbed nonlinear elliptic problems on manifolds,, Calc. Var. and Partial Differential Equations, 24 (2005), 459.   Google Scholar

[7]

J. Byeon and Z. Q. Wang, On the Hénon equation: Asymptotic profile of ground states,, Ann. Inst. H. Poincare Anal. Non Lineaire, 23 (2006), 803.  doi: 10.1016/j.anihpc.2006.04.001.  Google Scholar

[8]

J. Byeon and Z. Q. Wang, On the Hénon equation: Asymptotic profile of ground states II,, J. Differential Equations, 216 (2005), 78.   Google Scholar

[9]

D. Cao and S. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation,, J. Math. Anal. Appl., 278 (2003), 1.  doi: 10.1016/S0022-247X(02)00292-5.  Google Scholar

[10]

D. Cao, S. Peng and S. Yan, Asymptotic behaviour of ground state solutions for the Hénon equation,, IMA J. Appl. Math., 74 (2009), 468.  doi: 10.1093/imamat/hxn035.  Google Scholar

[11]

M. Gazzini and E. Serra, The Neumann problem for the Hénon equation, trace inequalities and Steklov eigenvalues,, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008), 281.  doi: 10.1016/j.anihpc.2006.09.003.  Google Scholar

[12]

G. Chen, W. M. Ni and J. Zhou, Algorithms and visualization for solutions of nonlinear ellptic equations,, Inter. Jour. Bifur. Chaos, 10 (2000), 1565.  doi: 10.1142/S0218127400001006.  Google Scholar

[13]

M. del Pino and P. L. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting,, Indiana Univ. Math. J., 48 (1999), 883.  doi: 10.1512/iumj.1999.48.1596.  Google Scholar

[14]

G. F. D. Duff, Partial differential equations,, in, (1956).   Google Scholar

[15]

P. Esposito, A. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $\mathbb R^2$,, J. Anal. Math., 100 (2006), 249.  doi: 10.1007/BF02916763.  Google Scholar

[16]

B. Gidas, W. N. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2nd edition, (1983).   Google Scholar

[18]

M. Gruter and K. Widman, The Green function for uniformly elliptic equations,, Manuscripta Math., 37 (1982), 303.  doi: 10.1007/BF01166225.  Google Scholar

[19]

N. Hirano, Existence of positive solutions for the Hénon equation involving critical Sobolev terms,, J. Differential Equations, 247 (2009), 1311.   Google Scholar

[20]

M. Hénon, Numerical experiments on the spherical stellar systems,, Astronomy and Astrophysics, 24 (1973), 229.   Google Scholar

[21]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Mathematics, 1150 (1985).   Google Scholar

[22]

Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations,, Comm. Pure Appl. Math., 51 (1998), 1445.  doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.0.CO;2-Z.  Google Scholar

[23]

W. M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications,, Indiana Univ. Math. J., 31(6) (1982), 801.  doi: 10.1512/iumj.1982.31.31056.  Google Scholar

[24]

W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819.  doi: 10.1002/cpa.3160440705.  Google Scholar

[25]

W. M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem,, Duke Math. J., 70 (1993), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[26]

W. M. Ni, X. B. Pan and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents,, Duke Math. J., 67 (1992), 1.  doi: 10.1215/S0012-7094-92-06701-9.  Google Scholar

[27]

W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems,, Comm. Pure Appl. Math., 48 (1995), 731.  doi: 10.1002/cpa.3160480704.  Google Scholar

[28]

A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth,, Math. Z., 256 (2007), 75.  doi: 10.1007/s00209-006-0060-9.  Google Scholar

[29]

S. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0.$,, Soviet Math. Dokl., 6 (1965), 1408.   Google Scholar

[30]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984).   Google Scholar

[31]

O. Rey, Boundary effect for an elliptic Neumann problem with critical nonlinearity,, Comm. in Partial Differential Equations, 22 (1997), 1055.   Google Scholar

[32]

S. Secchi and E. Serra, Symmetry breaking results for problems with exponential growth in the unit disk,, Commun. Contemp. Math., 8 (2006), 823.  doi: 10.1142/S0219199706002295.  Google Scholar

[33]

E. Serra, Non radial positive solutions for the Hénon equation with critical growth,, Calc. Var. Partial Differential Equations, 23 (2005), 301.   Google Scholar

[34]

M. Struwe, "Variational Methods; Application to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990).   Google Scholar

[35]

D. Smets, J. Su and M. Willem, Nonradial ground states for the Hénon equation,, Communications in Contemporary Mathematics, 4 (2002), 467.  doi: 10.1142/S0219199702000725.  Google Scholar

[36]

N. Varopoulos, Potential theory and diffusion on Riemannian manifolds, conference on harmonic analysis in honor of Antoni Zygmund,, Wadsworth Math. Ser., (1983), 821.   Google Scholar

[37]

J. Wei and S. Yan, Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth,, J. Math. Pures Appl., 88 (2007), 350.  doi: 10.1016/j.matpur.2007.07.001.  Google Scholar

[1]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[2]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[3]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[6]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[7]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[8]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[9]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[11]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[15]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[16]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[17]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[18]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]