\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the location of a peak point of a least energy solution for Hénon equation

Abstract / Introduction Related Papers Cited by
  • Let $\Omega $ be a smooth bounded domain. We are concerned about the following nonlinear elliptic problem:

    $\Delta u + |x|^{\alpha}u^{p} = 0, \ u > 0 \quad$ in $\Omega$,
    $\ u = 0 \quad$ on $\partial \Omega $,

    where $\alpha > 0, p \in (1,\frac{n+2}{n-2}).$ In this paper, we show that for $n \ge 8$, a maximum point $x_{\alpha }$ of a least energy solution of above problem converges to a point $x_0 \in \partial^$*$ \Omega $ satisfying $H(x_0) = \min_$$\w \in \partial ^$*$ \Omega$$H( w )$ as $\alpha \to \infty,$ where $H$ is the mean curvature on $\partial \Omega $ and $\partial ^$*$\Omega \equiv \{ x \in \partial \Omega : |x| \ge |y|$ for any $y \in \Omega \}.$
    Mathematics Subject Classification: Primary: 35J60, 35J20; Secondary: 35J25, 47J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Aubin, "Some Nonlinear Problems In Riemannian Geometry," Springer Monographs in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1998.

    [2]

    Adimurthi, G. Mancini and S. L. Yadava, The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. in Partial Differential Equations, 20 (1995), 591-631.

    [3]

    J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic equations, J. Differential Equations, 163 (2000), 429-474.

    [4]

    J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic equations, II, J. Differential Equations, 173 (2001), 321-355.

    [5]

    J. Byeon, Singularly perturbed nonlinear Neumann problems with a general nonlinearity, J. Differential Equations, 244 (2008), 2473-2497.

    [6]

    J. Byeon and J. Park, Singularly perturbed nonlinear elliptic problems on manifolds, Calc. Var. and Partial Differential Equations, 24 (2005), 459-477.

    [7]

    J. Byeon and Z. Q. Wang, On the Hénon equation: Asymptotic profile of ground states, Ann. Inst. H. Poincare Anal. Non Lineaire, 23 (2006), 803-828.doi: 10.1016/j.anihpc.2006.04.001.

    [8]

    J. Byeon and Z. Q. Wang, On the Hénon equation: Asymptotic profile of ground states II, J. Differential Equations, 216 (2005), 78-108.

    [9]

    D. Cao and S. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17.doi: 10.1016/S0022-247X(02)00292-5.

    [10]

    D. Cao, S. Peng and S. Yan, Asymptotic behaviour of ground state solutions for the Hénon equation, IMA J. Appl. Math., 74 (2009), 468-480.doi: 10.1093/imamat/hxn035.

    [11]

    M. Gazzini and E. Serra, The Neumann problem for the Hénon equation, trace inequalities and Steklov eigenvalues, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008), 281-302.doi: 10.1016/j.anihpc.2006.09.003.

    [12]

    G. Chen, W. M. Ni and J. Zhou, Algorithms and visualization for solutions of nonlinear ellptic equations, Inter. Jour. Bifur. Chaos, 10 (2000), 1565-1612.doi: 10.1142/S0218127400001006.

    [13]

    M. del Pino and P. L. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J., 48 (1999), 883-898.doi: 10.1512/iumj.1999.48.1596.

    [14]

    G. F. D. Duff, Partial differential equations, in "Mathematical Expositions," University of Toronto Press, Toronto, 1956.

    [15]

    P. Esposito, A. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $\mathbb R^2$, J. Anal. Math., 100 (2006), 249-280.doi: 10.1007/BF02916763.

    [16]

    B. Gidas, W. N. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.doi: 10.1007/BF01221125.

    [17]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd edition, Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo, 1983.

    [18]

    M. Gruter and K. Widman, The Green function for uniformly elliptic equations, Manuscripta Math., 37 (1982), 303-342.doi: 10.1007/BF01166225.

    [19]

    N. Hirano, Existence of positive solutions for the Hénon equation involving critical Sobolev terms, J. Differential Equations, 247 (2009), 1311-1333.

    [20]

    M. Hénon, Numerical experiments on the spherical stellar systems, Astronomy and Astrophysics, 24 (1973), 229-238.

    [21]

    B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE," Lecture Notes in Mathematics, 1150, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo, 1985.

    [22]

    Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490.doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.0.CO;2-Z.

    [23]

    W. M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31(6) (1982), 801-807.doi: 10.1512/iumj.1982.31.31056.

    [24]

    W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.doi: 10.1002/cpa.3160440705.

    [25]

    W. M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.doi: 10.1215/S0012-7094-93-07004-4.

    [26]

    W. M. Ni, X. B. Pan and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J., 67 (1992), 1-20.doi: 10.1215/S0012-7094-92-06701-9.

    [27]

    W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.doi: 10.1002/cpa.3160480704.

    [28]

    A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), 75-97.doi: 10.1007/s00209-006-0060-9.

    [29]

    S. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0.$, Soviet Math. Dokl., 6 (1965), 1408-1411.

    [30]

    M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1984.

    [31]

    O. Rey, Boundary effect for an elliptic Neumann problem with critical nonlinearity, Comm. in Partial Differential Equations, 22 (1997), 1055-1139.

    [32]

    S. Secchi and E. Serra, Symmetry breaking results for problems with exponential growth in the unit disk, Commun. Contemp. Math., 8 (2006), 823-839.doi: 10.1142/S0219199706002295.

    [33]

    E. Serra, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differential Equations, 23 (2005), 301-326.

    [34]

    M. Struwe, "Variational Methods; Application to Nonlinear Partial Differential Equations and Hamiltonian Systems," Springer-Verlag, 1990.

    [35]

    D. Smets, J. Su and M. Willem, Nonradial ground states for the Hénon equation, Communications in Contemporary Mathematics, 4 (2002), 467-480.doi: 10.1142/S0219199702000725.

    [36]

    N. Varopoulos, Potential theory and diffusion on Riemannian manifolds, conference on harmonic analysis in honor of Antoni Zygmund, Wadsworth Math. Ser., Belmont, CA, (1983), 821-837.

    [37]

    J. Wei and S. Yan, Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth, J. Math. Pures Appl., 88 (2007), 350-378.doi: 10.1016/j.matpur.2007.07.001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return