November  2011, 30(4): 1095-1106. doi: 10.3934/dcds.2011.30.1095

Counterexamples in non-positive curvature

1. 

Université de Bretagne Occidentale, 6 av. Le Gorgeu, 29238 Brest cedex, France

2. 

LAMFA, Université Picardie Jules Verne, 33 rue St Leu 80000 Amiens, France

Received  April 2010 Revised  August 2010 Published  May 2011

We give examples of rank one compact surfaces on which there exist recurrent geodesics that cannot be shadowed by periodic geodesics. We build rank one compact surfaces such that ergodic measures on the unit tangent bundle of the surface are not dense in the set of probability measures invariant by the geodesic flow. Finally, we give examples of complete rank one surfaces for which the non wandering set of the geodesic flow is connected, the periodic orbits are dense in that set, yet the geodesic flow is not transitive in restriction to its non wandering set.
Citation: Yves Coudène, Barbara Schapira. Counterexamples in non-positive curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1095-1106. doi: 10.3934/dcds.2011.30.1095
References:
[1]

D. V. Anosov, Geodesic flows on closed riemannian manifolds with negative curvature,, Proc. Steklov Inst. Math., 90 (1967).   Google Scholar

[2]

W. Ballmann, M. Brin and R. Spatzier, Structure of manifolds of nonpositive curvature. II,, Ann. of Math., 122 (1985), 205.  doi: 10.2307/1971303.  Google Scholar

[3]

P. Billingsley, Convergence of probability measures,, Wiley Series in Probability and Statistics: Probability and Statistics, (1999).   Google Scholar

[4]

Yu. D. Burago and S. Z. Shefel, The geometry of surfaces in Euclidean spaces,, Geometry, III, 48 (1992), 1.   Google Scholar

[5]

Y. Coudene and B. Schapira, Generic measures for hyperbolic flows on non-compact spaces,, Israel J. Math., 179 (2010), 157.  doi: 10.1007/s11856-010-0076-z.  Google Scholar

[6]

P. Eberlein, Geodesic flows on negatively curved manifolds I,, Ann. Math. II Ser., 95 (1972), 492.  doi: 10.2307/1970869.  Google Scholar

[7]

P. Eberlein, "Geometry of Nonpositively Curved Manifolds,", Chicago Lectures in Mathematics, (1996).   Google Scholar

[8]

J. Hadamard, Les surfaces courbures opposées et leurs lignes géodésiques,, dans Oeuvres (1898), 2 (1898), 729.   Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and Riemannian geometry,, Handbook of Dynamical Systems, 1A (2002), 453.   Google Scholar

[10]

G. Link, M. Peigné and J. C. Picaud, Sur les surfaces non-compactes de rang un,, L'enseignement Mathématique, 52 (2006), 3.   Google Scholar

[11]

C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos,, Studies in Advanced Mathematics, (1999).   Google Scholar

[12]

K. Sigmund, On the space of invariant measures for hyperbolic flows,, Amer. J. Math., 94 (1972), 31.  doi: 10.2307/2373591.  Google Scholar

show all references

References:
[1]

D. V. Anosov, Geodesic flows on closed riemannian manifolds with negative curvature,, Proc. Steklov Inst. Math., 90 (1967).   Google Scholar

[2]

W. Ballmann, M. Brin and R. Spatzier, Structure of manifolds of nonpositive curvature. II,, Ann. of Math., 122 (1985), 205.  doi: 10.2307/1971303.  Google Scholar

[3]

P. Billingsley, Convergence of probability measures,, Wiley Series in Probability and Statistics: Probability and Statistics, (1999).   Google Scholar

[4]

Yu. D. Burago and S. Z. Shefel, The geometry of surfaces in Euclidean spaces,, Geometry, III, 48 (1992), 1.   Google Scholar

[5]

Y. Coudene and B. Schapira, Generic measures for hyperbolic flows on non-compact spaces,, Israel J. Math., 179 (2010), 157.  doi: 10.1007/s11856-010-0076-z.  Google Scholar

[6]

P. Eberlein, Geodesic flows on negatively curved manifolds I,, Ann. Math. II Ser., 95 (1972), 492.  doi: 10.2307/1970869.  Google Scholar

[7]

P. Eberlein, "Geometry of Nonpositively Curved Manifolds,", Chicago Lectures in Mathematics, (1996).   Google Scholar

[8]

J. Hadamard, Les surfaces courbures opposées et leurs lignes géodésiques,, dans Oeuvres (1898), 2 (1898), 729.   Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and Riemannian geometry,, Handbook of Dynamical Systems, 1A (2002), 453.   Google Scholar

[10]

G. Link, M. Peigné and J. C. Picaud, Sur les surfaces non-compactes de rang un,, L'enseignement Mathématique, 52 (2006), 3.   Google Scholar

[11]

C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos,, Studies in Advanced Mathematics, (1999).   Google Scholar

[12]

K. Sigmund, On the space of invariant measures for hyperbolic flows,, Amer. J. Math., 94 (1972), 31.  doi: 10.2307/2373591.  Google Scholar

[1]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[2]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[3]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[4]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[5]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[10]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[11]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[12]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[13]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[17]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[18]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[19]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[20]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]