November  2011, 30(4): 1139-1144. doi: 10.3934/dcds.2011.30.1139

A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature

1. 

LAMFA – CNRS UMR 6140, Université de Picardie Jules Verne, 33, rue Saint-Leu 80039 Amiens CEDEX 1, France

2. 

Università degli Studi di Milano, Dipartimento di Matematica Via Saldini, 50, 20133 Milano

Received  February 2010 Revised  August 2010 Published  May 2011

N/A
Citation: Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139
References:
[1]

Marcel Berger, Paul Gauduchon and Edmond Mazet, "Le Spectre d'une Variété Riemannienne,", Lecture Notes in Mathematics, 194 (1971).   Google Scholar

[2]

Luis Caffarelli, Nicola Garofalo and Fausto Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences,, Comm. Pure Appl. Math., 47 (1994), 1457.  doi: 10.1002/cpa.3160471103.  Google Scholar

[3]

Alberto Farina, Yannick Sire and Enrico Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds,, preprint (2008)., (2008).   Google Scholar

[4]

Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature,, Adv. Math., 225 (2010), 2808.  doi: 10.1016/j.aim.2010.05.008.  Google Scholar

[5]

David Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1983).   Google Scholar

[6]

Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations,, Comm. Pure Appl. Math., 38 (1985), 679.  doi: 10.1002/cpa.3160380515.  Google Scholar

[7]

L. E. Payne, Some remarks on maximum principles,, J. Analyse Math., 30 (1976), 421.  doi: 10.1007/BF02786729.  Google Scholar

[8]

Vladimir E. Shklover, Schiffer problem and isoparametric hypersurfaces,, Rev. Mat. Iberoamericana, 16 (2000), 529.   Google Scholar

[9]

René P. Sperb, "Maximum Principles and their Applications,", Mathematics in Science and Engineering, 157 (1981).   Google Scholar

[10]

Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations,, Handbook of Differential Geometry, (2000), 963.   Google Scholar

[11]

Jiaping Wang, "Lecture Notes on, Geometric Analysis, ().   Google Scholar

show all references

References:
[1]

Marcel Berger, Paul Gauduchon and Edmond Mazet, "Le Spectre d'une Variété Riemannienne,", Lecture Notes in Mathematics, 194 (1971).   Google Scholar

[2]

Luis Caffarelli, Nicola Garofalo and Fausto Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences,, Comm. Pure Appl. Math., 47 (1994), 1457.  doi: 10.1002/cpa.3160471103.  Google Scholar

[3]

Alberto Farina, Yannick Sire and Enrico Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds,, preprint (2008)., (2008).   Google Scholar

[4]

Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature,, Adv. Math., 225 (2010), 2808.  doi: 10.1016/j.aim.2010.05.008.  Google Scholar

[5]

David Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1983).   Google Scholar

[6]

Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations,, Comm. Pure Appl. Math., 38 (1985), 679.  doi: 10.1002/cpa.3160380515.  Google Scholar

[7]

L. E. Payne, Some remarks on maximum principles,, J. Analyse Math., 30 (1976), 421.  doi: 10.1007/BF02786729.  Google Scholar

[8]

Vladimir E. Shklover, Schiffer problem and isoparametric hypersurfaces,, Rev. Mat. Iberoamericana, 16 (2000), 529.   Google Scholar

[9]

René P. Sperb, "Maximum Principles and their Applications,", Mathematics in Science and Engineering, 157 (1981).   Google Scholar

[10]

Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations,, Handbook of Differential Geometry, (2000), 963.   Google Scholar

[11]

Jiaping Wang, "Lecture Notes on, Geometric Analysis, ().   Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[3]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[11]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[12]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[13]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[14]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]