November  2011, 30(4): 1145-1159. doi: 10.3934/dcds.2011.30.1145

Towards the Chern-Simons-Higgs equation with finite energy

1. 

Department of Mathematics, Chung-Ang University, Seoul 156-756, South Korea

Received  October 2009 Revised  January 2011 Published  May 2011

Under the Coulomb gauge condition Chern-Simons-Higgs equations are formulated in the hyperbolic system coupled with elliptic equations. We consider a solution of Chern-Simons-Higgs equations with finite energy and show how to obtain $H^1$ solution with one exceptional term $\phi\partial_t A_0$ from which the model equations (63) are proposed.
Citation: Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145
References:
[1]

M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations,, Ann. of Math., 118 (1983), 187.  doi: 10.2307/2006959.  Google Scholar

[2]

N. Bournaveas, Low regularity solutions of the Dirac-Klein-Gordon equations in two space dimensions,, Comm. Partial Differential Equations, 26 (2001), 1345.   Google Scholar

[3]

H. Brezis and J. M. Coron, Multiple solutions of H-systems and Rellich's conjecture,, Comm. Pure Appl. Math., 37 (1984), 149.  doi: 10.1002/cpa.3160370202.  Google Scholar

[4]

L. A. Caffarelli and Y. Yang, Vortex condensation in Chern-Simons-Higgs model: An existence theorem,, Comm. Math. Phys., 168 (1995), 321.  doi: 10.1007/BF02101552.  Google Scholar

[5]

D. Chae and K. Choe, Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory,, Nonlinearity, 15 (2002), 747.  doi: 10.1088/0951-7715/15/3/314.  Google Scholar

[6]

D. Chae and O. Yu. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory,, Comm. Math. Phys., 215 (2000), 119.  doi: 10.1007/s002200000302.  Google Scholar

[7]

D. M. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space,, Comm. Math. Phys., 83 (1982), 171.  doi: 10.1007/BF01976040.  Google Scholar

[8]

D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave equations,, Ann. Sci. École Norm. Sup., 33 (2000), 211.   Google Scholar

[9]

J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and Scalar fields in the temporal gauge,, Comm. Math. Phys., 82 (1981), 1.  doi: 10.1007/BF01206943.  Google Scholar

[10]

J. Han and N. Kim, Nonself-dual Chern-Simons and Maxwell-Chern-Simons vortices on bounded domains,, J. Funct. Anal., 221 (2005), 167.  doi: 10.1016/j.jfa.2004.09.012.  Google Scholar

[11]

J. Hong, P. Kim and P. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory,, Phys. Rev. Lett., 64 (1990), 2230.  doi: 10.1103/PhysRevLett.64.2230.  Google Scholar

[12]

H. Huh, Low regularity solutions of the Chern-Simons-Higgs equations,, Nonlinearity, 18 (2005), 1.  doi: 10.1088/0951-7715/18/6/009.  Google Scholar

[13]

H. Huh, Local and global solutions of the Chern-Simons-Higgs system,, J. Funct. Anal., 242 (2007), 526.  doi: 10.1016/j.jfa.2006.09.009.  Google Scholar

[14]

R. Jackiw and E. Weinberg, Self-dual Chern-Simons vortices,, Phys. Rev. Lett., 64 (1990), 2234.  doi: 10.1103/PhysRevLett.64.2234.  Google Scholar

[15]

S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy,, Duke Math. J., 74 (1994), 19.  doi: 10.1215/S0012-7094-94-07402-4.  Google Scholar

[16]

S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations,, Commun. Contemp. Math., 4 (2002), 223.  doi: 10.1142/S0219199702000634.  Google Scholar

[17]

S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in $\mathbbR$${4+1}$,, J. Amer. Math. Soc., 12 (1999), 93.  doi: 10.1090/S0894-0347-99-00282-9.  Google Scholar

[18]

S. Lee and A. Vargas, Sharp null form estimates for the wave equation,, Amer. J. Math., 130 (2008), 1279.  doi: 10.1353/ajm.0.0024.  Google Scholar

[19]

H. Lindblad and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations,, J. Funct. Anal., 130 (1995), 357.  doi: 10.1006/jfan.1995.1075.  Google Scholar

[20]

V. Moncrief, Global existence of Maxwell-Klein-Gordon fields in $(2+1)$ dimensional spacetimes,, J. Math. Phys., 21 (1980), 2291.  doi: 10.1063/1.524669.  Google Scholar

[21]

M. Nolasco, Non-topological N-vortex condensates for the self-dual Chern-Simons theory,, Comm. Pure Appl. Math., 56 (2003), 1752.  doi: 10.1002/cpa.10109.  Google Scholar

[22]

S. Selberg, "Multilinear Spacetime Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations,", Ph.D. thesis, (1999).   Google Scholar

[23]

S. Selberg, On an estimate for the wave equation and applications to nonlinear problems,, Differential Integral Equations, 15 (2002), 213.   Google Scholar

[24]

S. Selberg, Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in $1+4$ dimensions,, Comm. Partial Differential Equations, 27 (2002), 1183.   Google Scholar

[25]

J. Spruck and Y. Yang, Topological solutions in the self-dual Chern-Simons theory,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 75.   Google Scholar

[26]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, 30 (1970).   Google Scholar

[27]

T. Tao, Multilinear weighted convolution of $L$2 functions, and applications to nonlinear dispersive equations,, Amer. J. Math., 123 (2001), 839.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[28]

G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory,, J. Math. Phys., 37 (1996), 3769.  doi: 10.1063/1.531601.  Google Scholar

[29]

D. Tataru, On the $X^s_\theta$ spaces and unique continuation for semilinear hyperbolic equations,, Comm. Partial Differential Equations, 21 (1996), 841.   Google Scholar

[30]

R. Wang, The existence of Chern-Simons vortices,, Comm. Math. Phys., 137 (1991), 587.  doi: 10.1007/BF02100279.  Google Scholar

[31]

H. Wente, An existence theorem for surfaces of constant mean curvature,, J. Math. Anal. Appl., 26 (1969), 318.  doi: 10.1016/0022-247X(69)90156-5.  Google Scholar

show all references

References:
[1]

M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations,, Ann. of Math., 118 (1983), 187.  doi: 10.2307/2006959.  Google Scholar

[2]

N. Bournaveas, Low regularity solutions of the Dirac-Klein-Gordon equations in two space dimensions,, Comm. Partial Differential Equations, 26 (2001), 1345.   Google Scholar

[3]

H. Brezis and J. M. Coron, Multiple solutions of H-systems and Rellich's conjecture,, Comm. Pure Appl. Math., 37 (1984), 149.  doi: 10.1002/cpa.3160370202.  Google Scholar

[4]

L. A. Caffarelli and Y. Yang, Vortex condensation in Chern-Simons-Higgs model: An existence theorem,, Comm. Math. Phys., 168 (1995), 321.  doi: 10.1007/BF02101552.  Google Scholar

[5]

D. Chae and K. Choe, Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory,, Nonlinearity, 15 (2002), 747.  doi: 10.1088/0951-7715/15/3/314.  Google Scholar

[6]

D. Chae and O. Yu. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory,, Comm. Math. Phys., 215 (2000), 119.  doi: 10.1007/s002200000302.  Google Scholar

[7]

D. M. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space,, Comm. Math. Phys., 83 (1982), 171.  doi: 10.1007/BF01976040.  Google Scholar

[8]

D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave equations,, Ann. Sci. École Norm. Sup., 33 (2000), 211.   Google Scholar

[9]

J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and Scalar fields in the temporal gauge,, Comm. Math. Phys., 82 (1981), 1.  doi: 10.1007/BF01206943.  Google Scholar

[10]

J. Han and N. Kim, Nonself-dual Chern-Simons and Maxwell-Chern-Simons vortices on bounded domains,, J. Funct. Anal., 221 (2005), 167.  doi: 10.1016/j.jfa.2004.09.012.  Google Scholar

[11]

J. Hong, P. Kim and P. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory,, Phys. Rev. Lett., 64 (1990), 2230.  doi: 10.1103/PhysRevLett.64.2230.  Google Scholar

[12]

H. Huh, Low regularity solutions of the Chern-Simons-Higgs equations,, Nonlinearity, 18 (2005), 1.  doi: 10.1088/0951-7715/18/6/009.  Google Scholar

[13]

H. Huh, Local and global solutions of the Chern-Simons-Higgs system,, J. Funct. Anal., 242 (2007), 526.  doi: 10.1016/j.jfa.2006.09.009.  Google Scholar

[14]

R. Jackiw and E. Weinberg, Self-dual Chern-Simons vortices,, Phys. Rev. Lett., 64 (1990), 2234.  doi: 10.1103/PhysRevLett.64.2234.  Google Scholar

[15]

S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy,, Duke Math. J., 74 (1994), 19.  doi: 10.1215/S0012-7094-94-07402-4.  Google Scholar

[16]

S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations,, Commun. Contemp. Math., 4 (2002), 223.  doi: 10.1142/S0219199702000634.  Google Scholar

[17]

S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in $\mathbbR$${4+1}$,, J. Amer. Math. Soc., 12 (1999), 93.  doi: 10.1090/S0894-0347-99-00282-9.  Google Scholar

[18]

S. Lee and A. Vargas, Sharp null form estimates for the wave equation,, Amer. J. Math., 130 (2008), 1279.  doi: 10.1353/ajm.0.0024.  Google Scholar

[19]

H. Lindblad and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations,, J. Funct. Anal., 130 (1995), 357.  doi: 10.1006/jfan.1995.1075.  Google Scholar

[20]

V. Moncrief, Global existence of Maxwell-Klein-Gordon fields in $(2+1)$ dimensional spacetimes,, J. Math. Phys., 21 (1980), 2291.  doi: 10.1063/1.524669.  Google Scholar

[21]

M. Nolasco, Non-topological N-vortex condensates for the self-dual Chern-Simons theory,, Comm. Pure Appl. Math., 56 (2003), 1752.  doi: 10.1002/cpa.10109.  Google Scholar

[22]

S. Selberg, "Multilinear Spacetime Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations,", Ph.D. thesis, (1999).   Google Scholar

[23]

S. Selberg, On an estimate for the wave equation and applications to nonlinear problems,, Differential Integral Equations, 15 (2002), 213.   Google Scholar

[24]

S. Selberg, Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in $1+4$ dimensions,, Comm. Partial Differential Equations, 27 (2002), 1183.   Google Scholar

[25]

J. Spruck and Y. Yang, Topological solutions in the self-dual Chern-Simons theory,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 75.   Google Scholar

[26]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, 30 (1970).   Google Scholar

[27]

T. Tao, Multilinear weighted convolution of $L$2 functions, and applications to nonlinear dispersive equations,, Amer. J. Math., 123 (2001), 839.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[28]

G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory,, J. Math. Phys., 37 (1996), 3769.  doi: 10.1063/1.531601.  Google Scholar

[29]

D. Tataru, On the $X^s_\theta$ spaces and unique continuation for semilinear hyperbolic equations,, Comm. Partial Differential Equations, 21 (1996), 841.   Google Scholar

[30]

R. Wang, The existence of Chern-Simons vortices,, Comm. Math. Phys., 137 (1991), 587.  doi: 10.1007/BF02100279.  Google Scholar

[31]

H. Wente, An existence theorem for surfaces of constant mean curvature,, J. Math. Anal. Appl., 26 (1969), 318.  doi: 10.1016/0022-247X(69)90156-5.  Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[6]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[9]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[10]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[12]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[13]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[14]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[17]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[19]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]